

IBM OpenPages with Watson
Version 8.2.0

GRC REST API Reference Guide

 2

Copyright Information

Licensed Materials - Property of IBM Corporation.

© Copyright IBM Corporation, 2003, 2021.

US Government Users Restricted Rights – Use, duplication or disclosure
restricted by GSA ADP Schedule Contract with IBM Corp.

This information contains sample application programs in source language,
which illustrate programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or
distributing application programs conforming to the application programming
interface for the operating platform for which the sample programs are
written.

These examples have not been thoroughly tested under all conditions. IBM,
therefore, cannot guarantee or imply reliability, serviceability, or function of
these programs. You may copy, modify, and distribute these sample programs
in any form without payment to IBM for the purposes of developing, using,
marketing, or distributing application programs conforming to IBM's
application programming interfaces.

Trademark Information

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions
worldwide.

The following terms are trademarks or registered trademarks of other
companies:

• Adobe, the Adobe logo, PostScript, and the PostScript logo are either
registered trademarks or trademarks of Adobe Systems Incorporated in
the United States, and/or other countries.

• Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

• The registered trademark Linux is used pursuant to a sublicense from the
Linux Foundation, the exclusive licensee of Linus Torvalds, owner of the
mark on a worldwide basis.

• UNIX is a registered trademark of The Open Group in the United States
and other countries.

• Java and all Java-based trademarks and logos are trademarks or
registered trademarks of Oracle and/or its affiliates.

Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the Web at
"Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

 3

Disclaimer

Although every precaution has been taken in the preparation of this document,
IBM assumes no responsibility for errors or omissions. No liability is assumed
for damages resulting from the use of the information contained herein.

 4

Contents
Contents... 4

Introduction.. 6

Audience .. 6

Finding information ... 6

RESTful systems ... 6

Addressability ... 6

Statelessness .. 7

Addressable space / URI design ... 7

Filter capability ... 8

Service document ... 9

Headers ... 9

Paths and parameters ... 9

/types .. 11

/contents .. 15

Uploading a document .. 23

Working with existing document data ... 23

/folders .. 28

Deleted resources ... 32

/query .. 33

/configuration ... 36

/adminMode ... 36

/currencies ... 36

/reportingPeriods .. 38

/text ... 38

/profiles .. 39

/security ... 45

/groups .. 45

/permissions ... 49

/roles ... 50

/users .. 51

/search ... 54

Range headers .. 56

/environmentmigration .. 56

/processes .. 58

 5

Return codes and errors .. 63

Error responses... 66

Security .. 67

Basic authentication .. 67

Client certificate authentication .. 67

Prerequisites ... 67

Setup steps .. 68

Testing client certificate authentication ... 69

Regular expressions .. 70

Client-server interactions ... 71

REST samples ... 72

AnonLossEventFormREST .. 72

TivoliDirectoryIntegratorConnector ... 72

Performance tips ... 73

Known limitations.. 73

Extend GRC API with custom REST services .. 74

Assumptions ... 74

Extension framework ... 74

Developing extensions ... 75

Dependencies ... 75

Implementing a simple extension framework RestController .. 76

Implementing RestControllers with JSON methods .. 77

Implementing RestControllers with error handling ... 79

Deploying RestControllers to the extension framework .. 80

Testing deployed RestControllers ... 80

Administering extension framework .. 80

 6

Introduction
The IBM OpenPages® GRC REST API provides access to IBM OpenPages® with WatsonTM data
and metadata. This data-centric API is specified in terms of resources, their URIs, and actions
that can be performed on these URIs. This document describes typical interactions and ways to
publish the API in conformance with the Content Management Interoperability Services (CMIS)
specification.

Audience
To use the OpenPages GRC REST API guide effectively, you should be familiar with the following:

• OpenPages with Watson
• Web services such as ASDL and REST
• HTML and the JavaScript scripting language (JSON)
• Programming languages and integrated development environments (IDEs), such as the

Java™ programming language and the Eclipse IDE, or the C# programming language
and the Microsoft Visual Studio IDE.

Finding information
To find IBM OpenPages with Watson product documentation on the web, including all translated
documentation, go to IBM Documentation. Release Notes are published directly to the site and
include links to the latest technotes and APARs.

RESTful systems
There is abundant literature on REST technology, its core principles, and what makes a system
RESTful. Additional reference information is provided at the end of this document. This section
provides basic information on RESTful systems.

A resource consists of any application data (or operation data) or metadata that makes up a
system and is exposed to the Web as a URI. The URI is the name and address of a resource. If
the information doesn’t have a URI, it’s not a Web resource. The API of a RESTful system is
articulated around resources and their URI.

The IBM OpenPages GRC REST API implements a RESTful style server that supports interaction
with the client over the HTTP standard protocol. The client-server interaction takes place when
the client makes an HTTP request to a URL and provides additional parameters or data in the
request’s header fields and body. The REST API which will handle and process the request and
return an appropriate HTTP response which contains a Status-Code indicating successful
operation or failure and optionally some data to be returned to the client in the response body.

Addressability
Addressability is the idea that every object and resource in your system is reachable through a
unique identifier. In a RESTful system, addressability is managed through the use of URIs. An
application is addressable if it exposes relevant aspects of its dataset as resources. Since
resources are exposed through URIs, an addressable application exposes a URI for every piece of
information it may serve, including application domain concepts, server operation states, or
services.

https://www.ibm.com/docs/en/opw/8.2.0

 7

Statelessness
Another feature of RESTful systems is statelessness, where HTTP requests occur in complete
isolation. When the client makes an HTTP request, it includes all the information necessary for
the server to fulfill that request. The server never relies on information from previous requests. If
that information is important, the client must include it in the request. Statelessness does not
mean that the server cannot have state (in fact a server's state should be maintained as
resources), rather it means that there is no client state maintained on the server. The client is
responsible for maintaining state information relative to its interaction and the server provides
state transition information, when required. This principle helps achieve the scalability expected
from Web applications.

The URL character set is limited to US-ASCII, which includes a number of reserved characters.

Reserved and restricted characters
Character Reservation/Restriction

% Reserved as escape token for encoded characters
/ Reserved for delimiting path segments in the path component
. Reserved in the path component
.. Reserved in the path component
Reserved as the fragment delimiter
? Reserved as the query-string delimiter
; Reserved as the parameter delimiter
: Reserved to delimit the scheme, user/password, and host/port components
$, + Reserved
@ & = Reserved; these characters have special meaning in the context of some schemes
{ } | \ ^ ~ [] ` Restricted; unsafe handling by various transport agents, such as gateways

< > " Unsafe; should be encoded because these characters often have meaning outside
the scope of the URL, such as delimiting the URL itself in a document.

0x00-0x1F,
0x7F

Restricted; characters within these hexadecimal ranges fall within the
nonprintable section of the US-ASCII character set

> 0x7F Restricted; characters whose hexadecimal values fall within this range do not fall
within the 7-bit range of the US-ASCII character set

URL designers have incorporated escape sequences to allow the encoding of arbitrary character
values or data using a restricted subset of the US-ASCII character set. The encoding simply
represents unsupported characters by an escape notation consisting of a percent sign (%)
followed by two hexadecimal characters that represent the ASCII code equivalent. For instance, if
the requested resource has an identifier that contains one of the reserved characters, it must be
URL encoded to escape them.

Addressable space / URI design
In the OpenPages model, the metadata it defines, and their corresponding data can be accessed,
updated, and created using the REST API. The REST API takes the form of URIs for these
resources. The complete set of supported actions, their paths, parameters and corresponding
returned codes are defined. Data sent and returned during these HTTP interactions can either be
in the HTTP body or as attachments.

This section describes the addressable space of an OpenPages application in terms of its URI
paths and parameters.

 8

• OpenPages with Watson and OpenPages on Cloud:
The root of an OpenPages application as deployed on an application server is
configurable. By default, /grc/api is used as the root of every path. The specification
of the URI address and the naming of path segments is not arbitrary.

Examples of URI paths for OpenPages GRC REST API:
http://localhost/grc/api
http://localhost/grc/api/types

• OpenPages on Cloud Pak for Data:
The root of an OpenPages application is /openpages-
<openpages_instance_name>. The root of every path for the REST API is
/openpages-<openpages_instance_name>-grc/api. The specification of the URI
address and the naming of path segments is not arbitrary.

Examples of URI paths for OpenPages GRC REST API using the external Cloud Pak for
Data URL:
https://<cloudpak_url>/openpages- openpagesinstance1-grc/api
https://<cloudpak_url>/openpages- openpagesinstance1-grc/api/types

When you call the OpenPages REST API from inside the cluster you might need to access
OpenPages by using its internal service name and port, instead of the external URL. Use
the internal URL, for example, if your environment has network restrictions that prevent
the use of the external URL.

The internal service URL uses the format: https://openpages-<instance_name>-
svc:10111.

For example, if the external URL for OpenPages is:
https://cpd-zen.apps.op-abc-test-10.xyz.company.com/openpages-openpagesinstance1/

The internal service URL is:
https://openpages-openpagesinstance1-svc:10111/

Example URI paths for the OpenPages GRC REST API using the internal URL for
OpenPages:
https://openpages-openpagesinstance1-svc:10111/openpages-openpagesinstance1-
grc/api
https://openpages-openpagesinstance1-svc:10111/openpages-openpagesinstance1-
grc/api/types

Filter capability
The OpenPages GRC REST API supports retrieving resources using simple filters specified as
properties to retrieve, date and time ranges or whether parent-child relationships should be
included in the response. Refer to the individual paths described in the Paths and Parameters
section for supported filters.

 9

Service document
A WADL Service document, which describes all the possible paths supported for the OpenPages
GRC REST API is provided which supports both HTTP GET and OPTIONS from the root URL
http://<SERVER_NAME>:<PORT>/grc/api.

By default, the document is returned as content-type application/vnd.sun.wadl+xml. To retrieve
in JSON format, add "Content-Type: application/json" in the request header.

Headers
The OpenPages GRC REST API supports standard HTTP header fields in the request for certain
methods.

• For sending data with POST or PUT use Content-Type: application/json
• For retrieving with GET use Accept: application/json
• X-HTTP-Method-Override and X-Method-Override header fields are

supported to override HTTP PUT and DELETE methods, which may be disallowed by
some firewalls.

• Authorization header field is supported for all requests when using HTTP Basic
authentication. See Security section of this document for more details.

• Range: items=n-n header field is supported for the Search APIs

Paths and parameters
The OpenPages GRC REST API supports the following paths and parameters.

API Path Segment HTTP Method
GET PUT POST DELETE

/grc/api/types X
/grc/api/types/{typeId} X
/grc/api/types/{typeId}/associations X
/grc/api/types/{typeId}/associations/parents X
/grc/api/types/{typeId}/associations/children X
/grc/api/types/{typeId}/associations/{associationId} X
/grc/api/contents X
/grc/api/contents/deletedresources X
/grc/api/contents/permissions/allowedtocreatetypes X
/grc/api/contents/{contentId} X X X
/grc/api/contents/{contentId}/document/{fileName} X X*
/grc/api/contents/{contentId}/document X X
/grc/api/contents/{contentId}/template X
/grc/api/contents/{contentId}/action/copy X
/grc/api/contents/{contentId}/action/move X
/grc/api/contents/{contentId}/action/lock X
/grc/api/contents/{contentId}/action/overwriteproperties X
/grc/api/contents/{contentId}/action/purge X
/grc/api/contents/{contentId}/action/unlock X
/grc/api/contents/{contentId}/action/removeAllLocks X
/grc/api/contents/{contentId}/associations X X X
/grc/api/contents/{contentId}/associations/parents X X X
/grc/api/contents/{contentId}/associations/parents/{parentId} X

 10

API Path Segment HTTP Method
GET PUT POST DELETE

/grc/api/contents/{contentId}/associations/children X X X
/grc/api/contents/{contentId}/associations/children/{childId} X
/grc/api/contents/{contentId}/auditLogs/association X
/grc/api/contents/{contentId}/auditLogs/fields X
/grc/api/contents/{contentId}/permissions/cancreate/{childtype} X
/grc/api/contents/{contentId}/permissions/effective X
/grc/api/contents/{contentId}/permissions/allowedtocreatetypes X
/grc/api/contents/{contentId}/report/{fieldName} X
/grc/api/folders X X
/grc/api/folders/{folderId} X X X
/grc/api/folders/{folderId}/containees X
/grc/api/folders/{folderId}/template X
/grc/api/folders/{folderId}/permissions/effective X
/grc/api/configuration/adminMode X X
/grc/api/configuration/currrencies X
/grc/api/configuration/currencies/base X
/grc/api/configuration/currencies/{code} X X
/grc/api/configuration/currencies/{code}/exchangeRates X X
/grc/api/configuration/currencies/exchangeRates X
/grc/api/configuration/reportingPeriods X
/grc/api/configuration/reportingPeriods/{reportingPeriods} X
/grc/api/configuration/reportingPeriods/current X
/grc/api/configuration/text/{textKey} X
/grc/api/configuration/settings/{settingPath} X
/grc/api/configuration/profiles X
/grc/api/configuration/profiles/{profile} X
/grc/api/configuration/profiles/{profile}/definition X
/grc/api/configuration/profiles/fields X
/grc/api/security/groups X X
/grc/api/security/groups/{groupId} X
/grc/api/security/groups/{groupId}/subgroups X X X
/grc/api/security/groups/{groupId}/users X X X
/grc/api/security/groups/{groupId}/permissions X
/grc/api/security/groups/{groupId}/roles X X X
/grc/api/security/users X
/grc/api/security/users/{userId} X X
/grc/api/security/users/{userId}/groups X
/grc/api/security/users/{userId}/permissions X
/grc/api/security/users/{userId}/roles X X X
/grc/api/security/users/{userId}/password X
/grc/api/security/users/{userId}/action/anonymize X
/grc/api/security/permissions X
/grc/api/security/permissions/{permissionId} X
/grc/api/security/roles X
/grc/api/security/roles/{roleId} X
/grc/api/security/roles/{rolesId}/access X
/grc/api/security/roles/{roleId}/permissions X
/grc/api/query/ X X
/grc/api/search X X

 11

API Path Segment HTTP Method
GET PUT POST DELETE

/grc/api/environmentmigration/export{processName} X* X*
/grc/api/environmentmigration/import{processName} X*
/grc/api/environmentmigration/process X*
/grc/api/environmentmigration/process/{processID} X*
/grc/api/processes X
/grc/api/processes/{processId} X X
/grc/api/processes/{processId}/logs X
/grc/api/processes/types X
/grc/api/processes/latest/{processTypeId} X

* Deprecated resource method

/types
Used to interact with OpenPages metadata. Object Types are the resources provided by /types
path and are identified by either name or Id.

• /grc/api/types: a GET operation with this path retrieves a list of Object Types for a
deployment and their URIs. An individual type could be considered a valid resource
accessible through a URI. Use optional parameter includeFieldDefinitions (value is true or
false) to specify whether or not field definitions should be included in the resource for a
type definition. Returns an array of types.
[

 {
 "name": "SOXDocument",
 "localizedLabel": "File",
 "localizedPluralLabel": "Files",
 "description": "OpenPages GRC Object Type",
 "id": "42",
 "rootFolderPath": "/_op_sox_documents/Files and Forms",
 "rootFolderId": "66"
 },
 {
 "name": "SOXExternalDocument",
 "localizedLabel": "Link",
 "localizedPluralLabel": "Links",
 "description": "OpenPages GRC Object Type",
 "jspPath": "/propertyForm/renderProperties.jsp",
 "id": "46",
 "rootFolderPath": "/_op_sox_documents/Files and Forms",
 "rootFolderId": "66"
 },
 {
 "name": "SOXIssue",
 "localizedLabel": "Issue",
 "localizedPluralLabel": "Issues",
 "description": "OpenPages GRC Object Type",
 "jspPath": "/propertyForm/renderProperties.jsp",
 "id": "44",

 12

 "rootFolderPath": "/_op_sox/Project/Default/Issue",
 "rootFolderId": "28"
 }
]

Also use optional parameter includeLocalizedLabels (value is true or false) to specify
whether or not localized labels should be included in the resource for a type definition for
all locales. By default, the parameter is false and the returned type only includes labels for
the current user’s locale.

Example: A GET operation to the following URL http://localhost/grc/api/types?
includeLocalizedLabels=true

Returns:
[
 {
 "name": "SOXDocument",
 "localizedLabel": "File",
 "localizedLabels":
 {
 "localizedLabel":
 [
 {
 "localeISOCode": "en_US",
 "localizedLabel": "File"
 },
 {
 "localeISOCode": "es_ES",
 "localizedLabel": "archivo"
 },
 {
 "localeISOCode": "it_IT",
 "localizedLabel": "File"
 }
]
 },
 "localizedPluralLabel": "Files",
 "localizedPluralLabels":
 {
 "localizedPluralLabel":
 [
 {
 "localeISOCode": "en_US",
 "localizedLabel": "Files"
 },
 {
 "localeISOCode": "es_ES",
 "localizedLabel": "Archivos"
 },
 {
 "localeISOCode": "it_IT",
 "localizedLabel": "File"

 13

 }
]
 },
 "description": "OpenPages GRC Object Type",
 "id": "42",
 "rootFolderPath": "/_op_sox_documents/Files and Forms",
 "rootFolderId": "66"
 },
]

• /grc/api/types/{id}: this URI refers to a specific Object Type uniquely identified by id.
A GET with this URI returns a representation of the Object Type including fields.

 {
 "name": "SOXTask",
 "localizedLabel": "Action Item",
 "localizedPluralLabel": "Action Items",
 "description": "OpenPages GRC Object Type",
 "jspPath": "/propertyForm/renderProperties.jsp",
 "id": "7",
 "rootFolderPath": "/_op_sox/Project/Default/IssueActionItems",
 "rootFolderId": "18",
 "fieldDefinitions":
 {
 "fieldDefinition":
 [
 {
 "id": "28",
 "name": "Resource ID",
 "localizedLabel": "Resource ID",
 "dataType": "ID_TYPE",
 "required": true,
 "description": "Resource ID",
 "computed": false,
 "readOnly": true,
 "dependencies":
 {
 "dependency":
 [
]
 },
 "enumValues":
 {
 "enumValue":
 [
]
 }
 },
 {
 "id": "59",
 "name": "Created By",
 "localizedLabel": "Created By",
 "dataType": "INTEGER_TYPE",
 "required": true,

 14

 "description": "The name of the user who created this object. It is set by the
application and cannot be edited.",
 "computed": false,
 "readOnly": true,
 "dependencies":
 {
 "dependency":
 [
]
 },
 "enumValues":
 {
 "enumValue":
 [
]
 }
 }
]

• /grc/api/types/{type id}/associations: These paths will give access to all parent-child
associations for the given type as a feed. A GET operation with these paths will return both
parent AND child associations for the type identified by id.

• /grc/api/types/{type id}/associations/[parents|children]: These paths will give
access to parent-child associations defined between available types as a feed. A GET
operation with these paths will return the parent OR child associations for the type identified
by id.

[
 {
 "id": "6",
 "name": "SOXIssue",
 "localizedLabel": "Issue",
 "associationDefinitionId": "9",
 "max": 2147483647,
 "min": 1,
 "enabled": true,
 "relationship": "Parent"
 },
 {
 "id": "4",
 "name": "SOXDocument",
 "localizedLabel": "File",
 "associationDefinitionId": "13",
 "max": 2147483647,
 "min": 0,
 "enabled": true,
 "relationship": "Child"
 },
 {
 "id": "8",
 "name": "SOXExternalDocument",
 "localizedLabel": "Link",

 15

 "associationDefinitionId": "14",
 "max": 2147483647,
 "min": 0,
 "enabled": true,
 "relationship": "Child"
 },
]

• /grc/api/types/{typeId}/associations/{associationId}: A GET operation will
retrieve the definition of an association between types for the specified type identified by id
and the association definition id.

/contents
Used to interact with OpenPages instance data such as GRC Objects. The GRC Objects can be
referenced by their Id, or path. The path may be either relative or full path. The path must be
URL encoded as it may contain ‘/’ reserved character.

• /grc/api/contents/: A POST to this URL containing the entry representing the object
to be created will create the GRC Object. The entry can be constructed from the
template returned from /grc/api/contents/template for the type of object being created.

Example: Creating Action Item POST this body to /grc/api/contents with header Content-
Type: application/json
{
 "fields":
 {
 },
 "typeDefinitionId": "45",
 "primaryParentId": "3954",
 "name": "testActionItem01",
 "description": "Action Item description"
}

The POST request body attributes will specify identifiers that determine how the Content
resource is created in the OpenPages application.

• typeDefinitionId could be either the Action Item Object Type's Id: 45 or it's system
name SOXTask. Note that Object Type label, “Action Item” is not supported.

• primaryParentId could be either another GRC Object Type's Id: 3954 or it's full path:
/op_sox/Project/Default/Issue/Parent-Issue.txt

• For every field in the fields the field must be identified uniquely by either the field's id
attribute or "id": "456" or name attribute "name": "OPSS-Iss:Status". See
“Updating a GRC Object” on page 17 for more details.

Example: For referencing an instance of an Issue using different options for the “contentId”
 Id: 3954
 Relative Path: Issue/Test 01/Issue 1
 Full Path: /_op_sox/Project/Default/Issue/Test 01/Issue 1.txt

 16

• /grc/api/contents/{id}: A GET operation on such a path would return a representation
of the OpenPages resource. Given the restrictions on the characters within a URI, the path
must be URL-encoded.

Example:

 {
 "name": "Issue 1",
 "id": "3954",
 "path": "/_op_sox/Project/Default/Issue/Test 01/Issue 1.txt",
 "description": "This is an example of free text.",
 "parentFolderId": "1969",
 "fields":
 {
 "field":
 [
 {
 "id": "28",
 "dataType": "ID_TYPE",
 "name": "Resource ID",
 "value": "3954"
 },
 {
 "id": "295",
 "dataType": "ENUM_TYPE",
 "name": "OPSS-Issue:Conclusion",
 "enumValue":
 {
 "id": "380",
 "name": "Deficiency",
 "localizedLabel": "Deficiency",
 "index": 1
 }
 },
 {
 "id": "288",
 "dataType": "MULTI_VALUE_ENUM",
 "name": "OPSS-Issue:Domain",
 "multiEnumValue":
 {
 "enumValue":
 [
 {
 "id": "354",
 "name": "Operational",
 "localizedLabel": "Operational",
 "index": 2
 },
 {
 "id": "355",
 "name": "Technology",
 "localizedLabel": "Technology",
 "index": 3

 17

 }
]
 }
 },
 {
 "id": "284",
 "dataType": "DATE_TYPE",
 "name": "OPSS-Issue:Due Date",
 "value":
 {
 }
 },

 {
 "id": "291",
 "dataType": "STRING_TYPE",
 "name": "OPSS-Issue:Identified By Individual",
 "value": "OpenPagesAdministrator"
 },

]
 },
 "typeDefinitionId": "44",
 "primaryParentId": "3049"
 }

If the GRC Object referenced by the Id is a SOXDocument type, there will be additional
information about the file attachment.

 "fileTypeDefinition":
 {
 "fileExtension": "xls",
 "mimeType": "application/vnd.ms-excel",
 "id": "46"
 },
 "contentDefinition":
 {
 "attribute":
 {
 "type": "application/vnd.ms-excel",
 "src": "http://localost/grc/api/contents/131/document/DefaultTemplate.xls"
 }
 }

A GET operation can optionally accept the query parameter

An application data resource with URI template /grc/api/contents/{id} can be modified by
performing a PUT operation with the updated value for the resource.

Example: Updating a GRC Object:
Request Body:

{

 18

 "fields":{
 "field":[
 {
 "name":"objFieldString",
 "dataType":"STRING_TYPE",
 "value":"{STRING_VALUE}"
 },
 {
 "name":"objFieldInteger",
 "dataType":"INTEGER_TYPE",
 "value":"{INTEGER_VALUE}"
 },
 {
 "name":"objFieldDecimal",
 "dataType":"FLOAT_TYPE",
 "value":"{FLOAT_VALUE}"
 },
 {
 "name":"objFieldBoolean",
 "dataType":"BOOLEAN_TYPE",
 "value":"{TRUE_OR_FALSE}"
 },
 {
 "name":"objFieldDate",
 "dataType":"DATE_TYPE",
 "value":"{DATE_VALUE}"
 },
 {
 "name":"objFieldCurrency",
 "dataType":"CURRENCY_TYPE",
 "baseAmount":"{NUMERIC_BASE_AMOUNT}",
 "localAmount":"{NUMERIC_LOCAL_AMOUNT}",
 "exchangeRate":"{NUMERIC_EXCHANGE_RATE}",
 "baseCurrency":{
 "isoCode":"{BASE_ISO}"
 },
 "localCurrency":{
 "isoCode":"{LOCAL_ISO}"
 }
 },
 {
 "name":"objFieldEnum",
 "dataType":"ENUM_TYPE",
 "enumValue":{
 "name":"{ENUM_VALUE}",
 "localizedLabel":"{ENUM_LABEL}",
 "index":"{NUMERIC_ENUM_INDEX}"
 }
 },
 {
 "name":"objFieldMulValEnum",
 "dataType":"MULTI_VALUE_ENUM",
 "multiEnumValue":{

 19

 "enumValue":[
 {
 "name":"{ENUM_VALUE_1}"
 },
 {
 "name":"{ENUM_VALUE_2}"
 }
]
 }
 }
]
 },
 "typeDefinitionId":"5",
 "primaryParentId":"20",
 "name":"testObj5",
 "description":"test object description"
}

When you update a GRC Object, you might also want to set fields with an empty value (blank).
For each data type, there can be a different approach to setting the field value to empty. See the
example request body for how to set each type of field to empty.

{
 "fields":{
 "field":[
 {
 "name":"objFieldString",
 "dataType":"STRING_TYPE",
 "value":null
 },
 {
 "name":"objFieldInteger",
 "dataType":"INTEGER_TYPE",
 "value":null
 },
 {
 "name":"objFieldDecimal",
 "dataType":"FLOAT_TYPE",
 "value":null
 },
 {
 "name":"objFieldBoolean",
 "dataType":"BOOLEAN_TYPE",
 "value":null
 },
 {
 "name":"objFieldDate",
 "dataType":"DATE_TYPE",
 "value":null
 },
 {
 "name":"objFieldCurrency",
 "dataType":"CURRENCY_TYPE",

 20

 "isAmountNull":true
 },
 {
 "name":"objFieldEnum",
 "dataType":"ENUM_TYPE",
 "enumValue":{

 }
 },
 {
 "name":"objFieldMulValEnum",
 "dataType":"MULTI_VALUE_ENUM",
 "multiEnumValue":{
 "enumValue":[

]
 }
 }
]
 },
 "typeDefinitionId":"5",
 "primaryParentId":"20",
 "name":"testObj5",
 "description":"test object description"
}

A DELETE operation would delete the resource.

“evaluateComputedFields”. When the value is true, the object representation contains a
computed field value. The default value is false. An example URL for the GET operation is:
http://localhost/grc/api/contents/3954?evaluateComputedFields=true

• /grc/api/contents/{id}/action/copy: A PUT operation to this URL containing the entry
representing the list of GRC objects will copy them to the GRC object specified by the id.

{

id:[{id}],
options:{
 includeChildren: true,
 conflictBehavior: "CREATECOPYOF",
 typeDefinitions:["SOXBusEntity"],
 typeAssociations:[
 {

parentObjectType: "SOXProcess",
 childObjectType: "SOXBusEntity"

}
],
 autoNameChildren:false
}

}

conflictBehavior specifies the desired behavior when a GRCObject with the same name
already exists in the target location of a copy.

 21

There are 4 supported behaviors:
1. CREATECOPYOF: Performs the copy. This operation will prefix the name of the copy

in the target location with 'Copy of' for the first instance of a conflict, or 'Copy (n) of'
for the nth instance of a conflict.

2. OVERWRITE: Overwrites the GRCObject at the destination with the GRCObject from
the source.

3. USEEXISTING: Keeps the GRCObject at the destination and associates it to the
source objects being copied.

4. ERROR: Throws OpenPagesException if a conflict exists.

typeAssociations specifies the list of object type associations that need to be honored
during the copy operation. This class enables the copy operation to look up the non-primary
parent relationships from the descendants of source GRCObject and associate the parent to
corresponding copied GRCObject.

autoNameChildren specifies if the associated children of the source GRCObject should be
autoNamed or not when copied. When the autoNameChildren flag is set to true, based on
their Auto-Named/Copied Object OpenPages registry value the children associated with the
GRCObject being copied are auto named.

• /grc/api/contents/{id}/action/move: A PUT operation to this URL containing the

entry representing the list of GRC objects will move them as children of the parent GRC
object specified by the id.
{

id:[{id}],
options:{
 includeChildren : true,
 conflictBehavior: "OVERWRITE",
 typeDefinitions:["SOXBusEntity"]
}

}
conflictBehavior specifies the desired behavior when a GRCObject with the same name
already exists in the target location of a move.
There are 3 supported behaviors:

1. OVERWRITE: Overwrites the GRCObject at the destination with the GRCObject from
the source.

2. USEEXISTING: Keeps the GRCObject at the destination and associates it to the
source objects being moved.

3. ERROR: Throws OpenPagesException if a conflict exists.

Example: A PUT operation to the following URL
http://localhost/grc/api/contents/7917/action/move
containing the entity below will move the GRCObject (with id =7920) as a child of the
GRCObject with id =7917.

{

id:["7920"],
options:{
 includeChildren : true,
 conflictBehavior: "OVERWRITE",
 typeDefinitions:["SOXBusEntity"]
}

}

 22

• /grc/api/contents/{id}/action/lock: A PUT operation to this URL will lock the GRC

Object specified by the id.
Example: A PUT operation to the following URL will lock the GRC object with id =5220.
http://localhost /grc/api/contents/5220/action/lock

• /grc/api/contents/{id}/action/overwriteproperties?fields={fieldIds}&value={
newValue}: A PUT operation to this URL will overwrite specific text fields of the GRC
Object specified by the id.
Example: A PUT operation to the following URL will overwrite fields ‘Description (56)’ and
‘Comments(62)’ with value ‘abc’ for the GRC object with id =5220.

http://localhost /grc/api/contents/5220/action/overwriteproperties?fields=56,62&value=abc

Limitations:
The data type of specific fields must one of:

STRING_TYPE
MEDIUM_STRING_TYPE
LARGE_STRING_TYPE
UNLIMITED_STRING_TYPE

The display type of specific fields in any profile must be one of:
Automatic
On Demand
On Demand Rich Text
Rich Text
Text
Text Area

For system fields, only the description field and the comment field are allowed.
Encrypted fields are not allowed.

The new value is required.

Permissions: The operation can only be performed by a super user.

• /grc/api/contents/{id}/action/purge: A DELETE operation to this URL will fully
removes all references to the GRC object specific by the id from the system, including past
versions, audit trail, OpenPages storage and records from reporting periods. The GRC
object id can be an object id or a soft deleted object id. This operation is final and cannot
be undone.

Example: A DELETE operation to the following URL will purge the GRC object with id
=5220.
http://localhost /grc/api/contents/5220/action/purge
Permissions: The operation can only be performed by a super user.

• /grc/api/contents/{id}/action/unlock: A PUT operation to this URL will unlock the

GRC Object specified by the id.

Example: A PUT operation to the following URL will unlock the GRC object with id =5220.
http://localhost /grc/api/contents/5220/action/unlock

 23

• /grc/api/contents/{id}/action/removeAllLock: A PUT operation to this URL will
remove all the locks from the GRC Object specified by the id as well as the hierarchy of
children below this GRC Object

• /grc/api/contents/{id}/document/{document name}: A GET operation will

retrieve the file attachment contents for this document. The content is available by
following the “src” attribute URL as well.

See Also: Working with existing document data

Uploading a document
To create (POST) or update (PUT) a new Document object, you must specify the
contentDefinition, the attribute which has a type for file mime Type and a children attribute
whose value is the contents of the file attachment. For plain text files this would be plain String
value representing the contents of the text file being uploaded. For other file types, that are
binary. The binary data for the file must be encoded in Base64 and the resulting Base64 string
will be the value for the "children" attribute:

• /grc/api/contents: A POST operation to this URL containing the entry representing the

object to be created will create a document.

{
 "contentDefinition":
 {
 "attribute":
 {

 "type": "text/plain" },
 "children": "Updated this document using json put upateDocumentContent API"
 },
 "fileTypeDefinition":
 {
 "id": "9",
 "mimeType": "text/plain",
 "fileExtension": "txt"
 },
 "fields":
 {
 },
 "typeDefinitionId": "4",
 "name": "MytestDoc1.txt",
 "description": "TestDocument created using json"
 }

Working with existing document data
• /grc/api/contents/{id}/document: A GET operation to this URL will return a response

containing the document’s contents. The data is returned in the response without any
encoding, depending on the file’s MIME type.

• /grc/api/contents/{id}/document: A PUT operation containing the document’s
content to update the existing document. There is no encoding required, only the actual
document content should be sent in the request body. For example, when sending an

 24

image file to update a document, you would read the binary data from the image file
locally, and then send the binary data as the request body.

Note: Use "application/xml" as the content type if the file's MIME type is "text/xml", and
use "application/xhtml+xml" as the content type if the file's MIME type is "text/html".

Deprecation Notice: The PUT method for
/grc/api/contents/{id}/document/{filename} is deprecated in 7.1.0.0 in favor of
this method, which is optimized for larger file sizes.

• /grc/api/contents/{ID}/associations: A GET operation retrieves all associations for
the given resources. A POST creates new associations.

 [
 {
 "id": "3049",
 "typeDefinitionId": "43",
 "path": "/_op_sox/Project/Default/BusinessEntity/Test 01/Test 01.txt",
 "associationDefinitionId": "5",
 "type": "PARENT"
 },
 {
 "id": "4134",
 "typeDefinitionId": "45",
 "path": "/_op_sox/Project/Default/IssueActionItems/Test 01/Issue Action Item 1.txt",
 "associationDefinitionId": "9",
 "type": "CHILD"
 },
 {
 "id": "32902",
 "typeDefinitionId": "45",
 "path": "/_op_sox/Project/Default/IssueActionItems/Test 01/testActionItem01.txt",
 "associationDefinitionId": "9",
 "type": "CHILD"
 }
]

• /grc/api/contents/{ID}/associations/parents: A GET operation retrieves only
parent associations for the given resources. A POST with a feed for new associations will
create new parent associations.

• /grc/api/contents/{id}/associations?children={id},{id}…;parents={id},{id}

…: A DELETE operation will remove parent and/or child associations for the given
resource. The list of parents or children Ids can be of any length. Separate parent and child
associations with a semi-colon.

• /grc/api/contents/{contentId}/auditLogs/association : A GET operation will

return a list of AssociationAuditLogs for the GRCObject specified by the id. If no filter is
specified, then all association logs are retrieved. To specify the filters, a query parameter is
used.
/grc/api/contents/{contentId}/auditLogs/association?associationFilter={associationFilters}}
&startDate={startDate}&endDate={endDate}

 25

Start date and end date are provided in the ISO8601 date format. “yyyMMdd'T'HHmmssZ"

• /grc/api/contents/{contentId}/auditLogs/fields: A GET operation to this URL will
return a list of FieldAuditLogs for the GRCObject specified by the id. If no filter specified,
then all field logs are retrieved. To specify the filters, a query parameter is used
/grc/api/contents/{contentId}/auditLogs/fields?fieldFilter={fieldFilters}&startDate={startDa
te}&endDate={endDate}

Start date and end date are provided in the ISO8601 date format yyyyMMdd'T'HHmmssZ

Example: A GET operation to the following URL
http://localhost/grc/api/contents/5220/auditlogs/fields?fieldFilters=Description,Name&start
Date=20130101T115227EST&endDate=20130910T115225EST

Returns:

 [
 {
 "name": "Name",
 "id": "55",
 "newValue": "testObject1updated.txt",
 "oldValue": "testObject1.txt",
 "modifiedBy": "OpenPagesAdministrator",
 "modifiedDate": "2013-09-10T11:52:27.000-04:00"
 },
 {
 "name": "Description",
 "id": "56",
 "newValue": "updated test object description",
 "oldValue": "test object description",
 "modifiedBy": "OpenPagesAdministrator",
 "modifiedDate": "2013-09-10T11:52:25.000-04:00"
 }

]

• /grc/api/contents/{contentId}/permissions/cancreate/{typeId}?folder={fold
erId}: A GET operation to this URL returns “true” if the authenticated user making the
request can create a child of typeId for the parent identified by contentId. A value of
“false” is returned if the user doesn’t have the required security permissions. The optional
folderId parameter specifies the parent folder to contain the instance being created. A
default folder for the parent context and child type is determined if folderId is not
specified.

Example: A GET operation to the following URL
http://localhost/grc/api/contents/5220/permissions/cancreate/LossEvent

Returns:
true

• /grc/api/contents/{contentId}/permissions/allowedtocreatetypes

?types={typeIds}: A GET operation to this URL returns a list of child types that the
authenticated user making the request can create for the parent identified by contentId.
The optional typeIds parameter lists the metadata type names or Ids of types in the

 26

environment to check against. If typeIds is not specified, all types in the environment are
checked, which may impact performance.

Example: A GET operation to the following URL
http://localhost/grc/api/contents/5220/permissions/allowedtocreatetypes?
types=LossEvent,LossImpact,LossRecovery

Returns:
[“ LossEvent”,”LossImpact”,”LossRecovery”]

• /grc/api/contents/{contentId}/permissions/effective?user={userId}: A GET

operation to this URL returns a JSON response with the effective permissions for the parent
identified by contentId. The userId query parameter is optional; if not provided, the service
returns results for the authenticated user making this request. Only Security Administrators
can make this request for a user other than themselves.

Example: A GET operation to the following URL
http://localhost/grc/api/contents/5220/permissions/effective?user=bill

Returns:
{
 "folderId":"1234",
 "securityPrincipal":"bill",
 "canRead":false,
 "canWrite":false,
 "canDelete":false,
 "canAssociate":false
}

Note: The folderId returned in this JSON represents the parent folder Id for the GRCObject
identified by contentId. In OpenPages with Watson, effective permissions are defined at
the folder level.

• /grc/api/contents/template?typeId={ID}: A GET operation on
/grc/api/contents/template would return a "templated" entry for this type of object
specified by the Type Definition Id (typeId) query parameter. It is used as a template to
create the new object. Once initialized, the new resource would be POSTed to
/grc/api/contents.

{
 "fields":
 {
 "field":
 [
 {
 "id": "90",
 "dataType": "DATE_TYPE"
 },
 {
 "id": "300",
 "dataType": "DATE_TYPE"
 },
 {

 27

 "id": "297",
 "dataType": "STRING_TYPE"
 },
 {
 "id": "301",
 "dataType": "STRING_TYPE"
 },
 {
 "id": "299",
 "dataType": "DATE_TYPE"
 },
 {
 "id": "302",
 "dataType": "INTEGER_TYPE"
 },
 {
 "id": "298",
 "dataType": "DATE_TYPE"
 }
]
 },
 "typeDefinitionId": "45"
 }

• /grc/api/contents/template?typeId={TypeID}&fileTypeId={FileTypeId}: For
document attachment File Types in addition to the Type Definition Id for the
SOXDocument or other type, you must specify a FileTypeId for desired File content type.
These file type ids are available in /grc/api/types/{TypeID} for document types.

For TypeId 42 (SOXDocument) and FileTypeId (46, xls file type)

 {
 "fields":
 {
 "field":
 [
]
 },
 "typeDefinitionId": "42",
 "fileTypeDefinition":
 {
 "fileExtension": "xls",
 "mimeType": "application/vnd.ms-excel",
 "id": "46"
 },
 "contentDefinition":
 {
 "attribute":
 {
 "type": "application/vnd.ms-excel"
 }
 }
 }

 28

• /grc/api/contents/permissions/allowedtocreatetypes?

?user={userId}&types={typeIds}: A GET operation to this URL returns the object
types that the user can create, based on security roles, groups and security rules. The
userId query parameter is optional; if not provided, the service returns results for the
authenticated user making this request. The optional typeIds parameter is lists the
metadata type names or Ids of types in the environment to check against. If not
provided, all types in the environment are checked, which may impact performance. Only
Security Administrators can make this request for a user other than themselves.

Example: A GET operation to the following URL
http://localhost/grc/api/contents/permissions/allowedtocreatetypes?user=bill&
types=LossEvent,LossImpact,LossRecovery

Returns: an array of type names that the user ‘bill’ can create:
[“ LossEvent”,”LossImpact”,”LossRecovery”]

• /grc/api/contents/{contentId}/report/{fieldName}: A GET operation to this
URL returns the executed report fragment output of given field. The value attribute of
the Report Fragment field response contains a snippet of HTML code returned from the
Report Fragment field execution by Cognos Report server. Refer to the OpenPages with
Watson_Administrator’s Guide for details on Report Fragment type fields and Cognos
reports. The fieldName consists of the field group name and the field name concatenated
by colon “:”. Characters specified in a URI path must be URL-encoded.

Note: Due to the expensive nature of this request on both the OpenPages and Cognos
servers, it is recommended that clients do not request this frequently, and client
applications should display report fragment fields on demand only.

Example: A GET operation to the following URL (field group: OPSS-BE, field name: RF)
http://localhost /grc/api/contents/3009/report/OPSS-BE%3ARF

Returns: a representation of OPSS-BE:RF field with the report fragment value:
{
 "dataType": "REPORT_TYPE",
 "id": "193",
 "name": "OPSS-BE:RF",
 "hasChanged": false,
 "value": "<div><div><table cellspacing=\"0\" cellpadding=\"0\" border=\"0\"
id=\"List1\" style=\"font-family:Arial Unicode MS; font-size:10.000000pt; \"><tr><td
style=\"font-family:Arial Unicode MS; font-size:10.000000pt; \">…."
}

/folders

• /grc/api/folders: A GET operation returns the root folder “/”. The folder information is in
the op:folder extension. To view the items contained by this folder, perform a GET
operation on the containees. For example, /grc/api/folders/1/containees

 [

 29

 {
 "name": "_cw_channels",
 "id": "7",
 "path": "/_cw_channels",
 "description": "Channels Folder",
 "parentFolderId": "1"
 },
 {
 "name": "_cw_destination",
 "id": "8",
 "path": "/_cw_destination",
 "description": "Destination Folder",
 "parentFolderId": "1"
 },
 {
 "name": "_op_sox",
 "id": "21",
 "path": "/_op_sox",
 "description": "OpenPages Compliance Objects Folder",
 "parentFolderId": "1"
 },
 {
 "name": "_op_sox_documents",
 "id": "22",
 "path": "/_op_sox_documents",
 "description": "OpenPages Compliance Documents Folder",
 "parentFolderId": "1"
 },
 {
 "name": "Migration Documents",
 "id": "206",
 "path": "/Migration Documents",
 "description": "Contains a history of migration files on this machine",
 "parentFolderId": "1"
 },
 {
 "name": "Reports",
 "id": "30",
 "path": "/Reports",
 "description": "Reporting Component JSPs",
 "parentFolderId": "1"
 },
 {
 "name": "System",
 "id": "9",
 "path": "/System",
 "description": "System Folder",
 "parentFolderId": "1"
 },
 {
 "name": "Templates",
 "id": "128",
 "path": "/Templates",

 30

 "description": "Application Template Files",
 "parentFolderId": "1"
 },
 {
 "name": "_trigger_config_.xml",
 "id": "41",
 "path": "/_trigger_config_.xml",
 "description": "Trigger Configurations",
 "parentFolderId": "1",
 "fields":
 {
 "field":
 [
 {
 "id": "28",
 "dataType": "ID_TYPE",
 "name": "Resource ID",
 "value": "41"
 },

 {
 "id": "59",
 "dataType": "INTEGER_TYPE",
 "name": "Created By",
 "value": 2
 },
 {
 "id": "58",
 "dataType": "DATE_TYPE",
 "name": "Creation Date",
 "value":
 {
 }
 },
 {
 "id": "60",
 "dataType": "DATE_TYPE",
 "name": "Last Modification Date",
 "value":
 {
 }
 },
 {
 "id": "61",
 "dataType": "INTEGER_TYPE",
 "name": "Last Modified By",
 "value": 6
 },
 {
 "id": "57",
 "dataType": "STRING_TYPE",
 "name": "Location",
 "value": "/_trigger_config_.xml"

 31

 },
 {
 "id": "55",
 "dataType": "STRING_TYPE",
 "name": "Name",
 "value": "_trigger_config_.xml"
 }
]
 },
 "typeDefinitionId": "1"
 }

]

• /grc/api/folder: A POST operation to this URL containing the entry representing a folder

object to be created will create the folder.
 {
 "name": "testFolder",
 "path": "/testFolder",
 "description": "TestFolder",
 "parentFolderId": "1"
 }

• /grc/api/folders/{id}: A GET operation returns an entry for the specified folder by its
id. A PUT operation to this URL containing the entry representing the folder object will
update the folder with the specified id. A DELETE operation will delete the folder with the
specified id.

Example: GET operation on the following URL

http://localhost/grc/api/folders/7914

Returns:
 {
 "name": "testFolder",
 "id": "7914",
 "path": "/testFolder",
 "description": "TestFolder",
 "parentFolderId": "1",
 "links":
 [
 {
 "href": "7914",
 "rel": "self"
 },
 {
 "type": "application/json",
 "href": "7914?alt=application%2Fjson",
 "rel": "alternate"
 },
 {
 "href": "7914",
 "rel": "edit"
 },
 {

 32

 "type": "application/json",
 "href": "7914?alt=application%2Fjson",
 "rel": "describedby"
 },
 {
 "type": "application/json",
 "href": "1?alt=application%2Fjson",
 "rel": "up"
 },
 {
 "type": "application/json",
 "href": "7914/containees?alt=application%2Fjson",
 "rel": "down"
 }
]
 }

• /grc/api/folders/{id}/containees: A GET operation returns a feed for all children in
the folder. Note the entries in some cases will be of folders, but also other resources or
GRC Object entries. See /grc/api/contents examples.

• /grc/api/folders/{id}/permissions/effective?user={userId}: A GET operation to

this URL returns a JSON response for the effective permissions for the parent identified by
”id”. The user query parameter is optional; if not provided, the service returns results for
the authenticated user making this request. Only Security Administrators can make this
request for a user other than themselves.

Example: A GET operation to the following URL
http://localhost/grc/api/folders/1234/permissions/effective?user=bill

Returns:
{
 "folderId":"1234",
 "securityPrincipal":"bill",
 "canRead":false,
 "canWrite":false,
 "canDelete":false,
 "canAssociate":false
}

Deleted resources
• /grc/api/contents/deletedresources?filter={condition}&startRow={paging

start row index}&endRow={paging end row index}: A GET operation to this URL
will get soft deleted GRC objects with specific filter conditions.

Example: A GET operation to the following URL will get soft deleted GRC objects which
location like ‘%Business%’ and type is ‘SOXBusEntity(5)’.

http://localhost /grc/api/ contents/ deletedresources?filter=Location Like
%25Business%25&filter1=Content Type Id=5

Notes:

 33

The parameter ‘filter’ supports multiple conditions with a continued index, for example
filter, filter1, filter2…

These filter indexes must be continued, “filter=…filter2=…” is not supported.

The filter fields can be one of:

"Content Type Id"
"Created By"
"Creation Date"
"Description"
"Last Modification Date"
"Last Modified By"
"Location"
"Resource Id"
"Resource Type" (The field value type is integer, 1 for resource, 2 for folder).

The filter operation can be one of: "=", "!=", "<", "<=", ">", ">=", "LIKE", "NOT LIKE".

Operations “LIKE” and “NOT LIKE” support to use the percent ('%') matches any group of
characters, and use the underscore ('_') matches any single character.

Permissions: The operation can only be performed by a super user.

/query
• /grc/api/query?{query specification}: A GET operation using this URI performs a

query using the query service syntax call on the OpenPages model and pages through the
result set. The result contains a JSON object with a set of links and an array of rows. Each
row contains an object that includes all the fields for each row that was returned from the
query. This resource URI supports two query parameters, one for the query string and the
other for result pagination support. Query string can be specified using the “q” parameter,
the query string syntax that can be used is documented in the IBM OpenPages GRC
Platform API Javadoc. Pagination is supported using the “skipCount” parameter, which
specifies the starting result row. For the first row, “skipCount=0” should be used. For
results greater than the default page size of 50, use href URL with attribute rel=”next” link
to execute the query for the next page. Other optional parameters for query include:

o caseInsensitive – string-type conditions are case-insensitive or not. Default is false.
o pageSize – number of rows per page
o maxRows – total number of rows returned by the query
o honorPrimary – only include primary associations

Example: A GET operation on the following URL (For unescaped query string: SELECT
[Name],[Shared:Shared Integer] FROM [LevelOne])

http://localhost/grc/api/query?skipCount=0&pageSize=50&maxRows=2&caseInsensitive=f
alse&honorPrimary=false&q=SELECT+%5BName%5D,+%5BShared:Shared+Integer%5D
+FROM+%5BLevelOne%5D

Returns:
{
 "links":
 [

 34

 {
 "rel": "self“,
 href":
"http://localhost/grc/api/query?skipCount=0&q=SELECT+%5BName%5D,+%5BShared:Sh
ared+Integer%5D+FROM+%5BLevelOne%5D"
 },
 {
 "rel": "alternate",
 "href":
”http://localhost/grc/api/query?skipCount=0&q=SELECT+%5BName%5D,+%5BShared:Sh
ared+Integer%5D+FROM+%5BLevelOne%5D&alt=application%2Fjson",
 "type": "application/json"
 },
 {
 "rel": "alternate",
 "href":
“http://localhost/grc/api/query?skipCount=0&q=SELECT+%5BName%5D,+%5BShared:Sh
ared+Integer%5D+FROM+%5BLevelOne%5D&alt=application%2Fatom%2Bxml",
 "type": "application/atom+xml"
 },
 {
 "rel": "first",
 "href":
"http://localhost/grc/api/query?skipCount=0&q=SELECT+%5BName%5D,+%5BShared:Sh
ared+Integer%5D+FROM+%5BLevelOne%5D&alt=application%2Fjson",
 "type": "application/json"
 },
 {
 "rel": "next",
 "href":
"http://localhost/grc/api/query?skipCount=50&q=SELECT+%5BName%5D,+%5BShared:S
hared+Integer%5D+FROM+%5BLevelOne%5D&alt=application%2Fjson",
 "type": "application/json"
 }
],
 "rows":
 [
 {
 "fields":
 {
 "field":
 [
 {
 "id": "55",
 "dataType": "STRING_TYPE",
 "name": "Name",
 "value": "Level One 1"
 },
 {
 "id": "142",
 "dataType": "INTEGER_TYPE",
 "name": "Shared:Shared Integer",
 "value": 31

 35

 }
]
 }
 },
 {
 "fields":
 {
 "field":
 [
 {
 "id": "55",
 "dataType": "STRING_TYPE",
 "name": "Name",
 "value": "Level One 2"
 },
 {
 "id": "142",
 "dataType": "INTEGER_TYPE",
 "name": "Shared:Shared Integer",
 "value": 17
 }
]
 }
 }
]
 }

• /grc/api/query A POST operation using this URI with the query statement and skip

count being specified in the body of the request in JSON format performs a query the same
as the GET method.

Example: A POST to the following URL
http://localhost/grc/api/query

With JSON Body to define the query:
{
 "statement": " SELECT [Resource ID] FROM [SOXDocument] ",
 "skipCount": 0,
 "maxRows": 0,
 "pageSize": 50,
 "caseInsensitive": false,
 "honorPrimary": false
}

Returns:
{
 "links": [
 {
 "rel": "self",
 "href":
"query?skipCount=0&q=SELECT+%5BResource+ID%5D+FROM+%5BSOXDocument%5D"
 },
 {

 36

 "rel": "alternate",
 "href":
"query?skipCount=0&q=SELECT+%5BResource+ID%5D+FROM+%5BSOXDocument%5D
&alt=application%2Fjson",
 "type": "application/json"
 },
 {
 "rel": "first",
 "href":
"query?skipCount=0&q=SELECT+%5BResource+ID%5D+FROM+%5BSOXDocument%5D
&alt=application%2Fjson",
 "type": "application/json"
 }
],
 "rows": [
 {
 "fields": {
 "field": [
 {
 "dataType": "ID_TYPE",
 "id": "28",
 "name": "Resource ID",
 "value": "80"
 }
]
 }
 }
]
}

/configuration

/adminMode
• /grc/api/configuration/adminMode: A GET operation returns true or false depending

on whether the administrator mode is enable or disabled

• /grc/api/configuration/adminMode?enable{true|false}: A PUT operation to this

URL can modify the system admin mode setting.

/currencies
• /grc/api/configuration/currencies/base : A GET operation to this URL will return the

OpenPages base currency information.
{
 "name": "United States of America, Dollars",
 "id": "10",
 "symbol": "$",
 "precision": 2,
 "isEnabled": true,
 "isoCode": "USD",
 "isBaseCurrency": true

 37

}

• /grc/api/configuration/currencies : A GET operation to this URL will return all the
currency information for all the OpenPages currencies.

• /grc/api/configuration/currencies/{code} : A GET operation to this URL will return

the currency information for the specified ISO currency code.

Example: A GET operation to the following URL
http://localhost/grc/api/configuration/currencies/EUR

Returns:

{
 "name": "Euro",
 "id": "300",
 "symbol": "€",
 "precision": 2,
 "isEnabled": true,
 "isoCode": "EUR",
 "isBaseCurrency": false
}

• grc/api/configuration/currencies/{code}?enabled: A PUT operation using
onlyEnabled query parameter to request either all currencies when false or only the
enabled currencies when true.

• grc/api/configuration/currencies/{code}/exchangeRates?date={As of Date}:

A GET operation to this URL will return exchange rates for a currency for a specified ISO
currency code. The default path returns the current exchange rate. Optionally, to get the
exchange rate as of a particular date, use the date parameter. The expected As of Date
format is ISO 8601 'yyyyMMdd'T'HHmmssZ. To retrieve all historical exchange rates for this
currency code, omit the date parameter and use parameter ‘history=true’.
A POST operation to this URL will set a specific exchange rate. When startDate is not
provided, the default value will be the current date.

Example: A POST operation to the following URL
http://localhost/grc/api/configuration/currencies/CAD/exchangeRates

{
 "rate":0.8636,
 "startDate":"2015-05-20"
}

• grc/api/configuration/currencies/exchangeRates: A POST operation to this URL will
set a list of exchange rates. The currencyCode is an ISO currency code, and if startDate is
not provided, the default value will be the current date.

Example: A POST operation to the following URL
http://localhost/grc/api/configuration/currencies/exchangeRates

[
 {
 "currencyCode":"CAD",
 "rate":0.8636
 },
 {

http://localhost/grc/api/configuration/currencies/CAD/exchangeRates

 38

 "currencyCode":"EUR",
 "rate":1.1143,
 "startDate":"2015-05-20"
 }
]

/reportingPeriods
• grc/api/configuration/reportingPeriods : A GET operation to this URL will return all

the reporting periods.

[
 {
 "id": "1",
 "description": "Finalized reporting period description",
 "creationDate": "2013-08-02T01:14:27.000-04:00",
 "label": "Finalized reporting period name:2013-08-02T01:08:20-04:00",
 "modifiedDate": "2013-08-02T01:14:27.513-04:00",
 "finalizedDate": "2013-08-02T01:14:34.888-04:00"
 },
 {
 "id": "-1",
 "description": "Current Reporting Period",
 "creationDate": "2013-08-01T21:52:26.000-04:00",
 "label": "Current Reporting Period",
 "modifiedDate": "2013-08-01T21:52:26.997-04:00",
 "finalizedDate": "2013-08-01T21:52:26.997-04:00"
 }
]

• grc/api/configuration/reportingPeriods/{reportingPeriod}: A GET operation to

this URL will return the reporting period of the specified name.

• grc/api/configuration/reportingPeriods/current: A GET operation to this URL will

return the current reporting period

{
 "id": "-1",
 "description": "Current Reporting Period",
 "creationDate": "2013-08-01T21:52:26.000-04:00",
 "label": "Current Reporting Period",
 "modifiedDate": "2013-08-01T21:52:26.997-04:00",
 "finalizedDate": "2013-08-01T21:52:26.997-04:00"
}

/text
grc/api/configuration/text: A GET operation to this URL returns all the application text
for the user’s locale. Optionally use parameter categoryFilters to filter application texts by
category names. Also use optional parameter includeLocalizedLabels to include localized
labels for all the locales.

Example: A GET operation to
http://localhost/grc/api/configuration/text?categoryFilters=Buttons,Titles

 39

Returns the following JSON response:

[
 {
 "name": "button.copy",
 "category": "Buttons",
 "localizedLabel": "Copy"
 },
 {
 "name": "com.title.group.associate.subgroups",
 "category": "Titles",
 "localizedLabel": "Associate Groups"
 },
 {
 "name": "com.title.guidedaction.add.dependency",
 "category": "Titles",
 "localizedLabel": "Add Field Dependency"
 }
]

• grc/api/configuration/text/{textKey}: A GET operation to this URL will return
application text value for the user’s locale. The text key is the application text key as defined
in the Administration > Application Text menu.

Example: A GET operation to
http://localhost/grc/api/configuration/text/com.label.activityview.detailview

Returns:
Rendered As JSON:

[
 "D",
 "e",
 "t",
 "a",
 "i",
 "l",
 " ",
 "V",
 "i",
 "e",
 "w"
]

/profiles
• grc/api/configuration/profiles: A GET operation to this URL will return the profile

summary information of all the profiles.

[
 {
 "name": "Default",
 "id": "1",
 "description": "Default Profile",
 "isEnabled": true,

 40

 "isDefault": false,
 "isFallback": false,
 "isDeleted": false
 },
 {
 "name": "OpenPages Platform",
 "id": "2",
 "description": "OpenPages Platform Profile",
 "isEnabled": true,
 "isDefault": false,
 "isFallback": false,
 "isDeleted": false
 },
 {
 "name": "Testing",
 "id": "3",
 "description": "Generated by AFCON 6.1",
 "isEnabled": true,
 "isDefault": true,
 "isFallback": true,
 "isDeleted": false
 }
]

• grc/api/configuration/profiles/{profile}: A GET operation to this URL will return the

profile summary of the specified name or the id.

Example: A GET operation to the following URL
http://localhost/grc/api/configuration/profiles/2

Returns:

 {
 "name": "OpenPages Platform",
 "id": "2",
 "description": "OpenPages Platform Profile",
 "isDefault": false,
 "isFallback": false,
 "isEnabled": true,
 "isDeleted": false
 }

• grc/api/configuration/profiles/{profile}/definition: A GET operation to this URL

will return full profile definition of the specified name or the id.

Example: A GET operation to the following URL
http://localhost/grc/api/configuration/profiles/3/definitions

 Returns:

{
 "name": "OpenPages Platform",
 "id": "2",
 "description": "OpenPages Platform Profile",
 "isDefault": false,
 "isFallback": false,

 41

 "objectTypes":
 {
 "objectType"
 [
 {
 "name": "SOXBusEntity",
 "id": "43",
 "typeDefinition": "SOXBusEntity",
 "order": 1,
 "fields":
 {
 "field":
 [
 {
 "fieldSystemName": "Name",
 "id": "55",
 "displayType":
 {
 "name": "Text",
 "id": "4",
 "maxLength": 4000,
 "columns": 30
 },
 "isRequired": true,
 "isReadOnly": false
 },
 {
 "fieldSystemName": "Description",
 "id": "56",
 "displayType":
 {
 "name": "TextArea",
 "id": "8",
 "columns": 60,
 "rows": 5
 },
 "isRequired": false,
 "isReadOnly": false
 }
]
 },
 "views":
 {
 "view":
 [

 {
 "id": "34",
 "viewTypeName": "Folder",
 "name": "ID=34 OP=2 AT=43 VT=12",
 "showDescription": true,
 "isDefault": false,
 "isDisabled": false,

 42

 "attributes":
 {
 "attribute":
 [
]
 },
 "rootView": "34",
 "childViews":
 {
 "childView":
 [
]
 },
 "fields":
 {
 "field":
 [
 {
 "id": "1",
 "order": 1
 },
 {
 "id": "2",
 "order": 2
 }
]
 },
 "sections":
 {
 "section":
 [
]
 }
 },
 {
 "id": "1",
 "viewTypeName": "Overview",
 "showDescription": true,
 "isDefault": false,
 "isDisabled": false,
 "attributes":
 {
 "attribute":
 [
]
 },
 "types":
 [
 {
 "type":
 [
 {
 "id": "43"

 43

 },
 {
 "id": "46"
 },
 {
 "id": "42"
 }
]
 }
]
 },
]
 }
 },
]

• grc/api/configuration/profiles/field: A GET operation to this URL will return the field
definitions with profile context for a particular view on an object type e.g.Fields from Detail
view for SOXBusEntity.

Example: A GET operation to the following URL
http://localhost/grc/api/configuration/profiles/fields/?profile=OpenPages
Platform&type=SOXBusEntity&view=Detail

Returns:

 [
 {
 "id": "55",
 "name": "Name",
 "localizedLabel": "Name",
 "dataType": "STRING_TYPE",
 "required": true,
 "description": "The name of this object.",
 "computed": false,
 "readOnly": true,
 "dependencies":
 {
 "dependency":
 [
]
 },
 "enumValues":
 {
 "enumValue":
 [
]
 },
 "isRequired": true,
 "objectOrder": 1,
 "displayType":
 {
 "name": "Text",
 "parameters":
 [

 44

 {
 "key": "spanColumns",
 "value": "false"
 },
 {
 "key": "maxLength",
 "value": "4000"
 },
 {
 "key": "columns",
 "value": "30"
 }
]
 },
 "profileFieldDefinitionId": "1",
 "profileTypeDefinitionId": "1"
 },
 {
 "id": "57",
 "name": "Location",
 "localizedLabel": "Folder",
 "dataType": "STRING_TYPE",
 "required": true,
 "description": "Object path within this object hierarchy. It cannot be edited after it is
created.",
 "computed": false,
 "readOnly": true,
 "dependencies":
 {
 "dependency":
 [
]
 },
 "enumValues":
 {
 "enumValue":
 [
]
 },
 "isRequired": true,
 "objectOrder": 3,
 "displayType":
 {
 "name": "Text",
 "parameters":
 [
 {
 "key": "spanColumns",
 "value": "false"
 },
 {
 "key": "maxLength",
 "value": "4000"

 45

 },
 {
 "key": "columns",
 "value": "30"
 }
]
 },
 "profileFieldDefinitionId": "3",
 "profileTypeDefinitionId": "1"
 }
]

• grc/api/configuration/settings/{settingPath}: A GET operation to this URL will
return the setting information for the specified setting path. As the path may contain '/' it
needs to be an URL encoded.

Example: A GET operation to the following URL

http://localhost/grc/api/configuration/settings/%2FOpenPages%2FApplications%2F
GRCM%2FAudit Trail%2FShow Audit Trail For Custom Forms

Returns

{
 "value": "false",
 "key": "/OpenPages/Applications/GRCM/Audit Trail/Show Audit Trail For Custom
Forms"
}

/security

/groups
Some of the URL’s related to groups expect a group id. This {id} can be either the group’s
name or the group’s OpenPages Id. If the group’s name is numeric – e.g. ‘12345’ - then add
the following parameter to the url: isName=[true | false]. If the parameter isName is not
specified it is the same as if ‘isName=false’ was used.

Here are examples of the usage:
/grc/api/security/groups/12345/roles?isName=true
/grc/api/security/groups/12345/roles?role={roleId}&context={grcObjectId}& isName=true

• /grc/api/security/groups: A POST to this URL containing the entry representing the

object to be created will create the user Group. The entry contains GroupInfo, which
has a groupName, description, emailAddress, parentId, level of the user group and other
specifications like whether the group is enabled, editable, hidden or locked.

Example: Create Group
POST this body to /grc/api/security/groups with header Content-Type: application/json
{
 "description": "Rest API test group",
 "groupName": "RestTestGroup9",
 "isHidden": false,
 "isEnabled": true,

 46

 "adminLevel": 2,
 "isEditable": false,
 "isLocked": false,
 "isDeleted": false,
 "emailAddress": "others@openpages.local",
 "parentId":"11"

 }

Note: Attribute "emailAdress" is deprecated as of release version 7.3. Please use
"emailAddress" instead.

• /grc/api/security/groups: A GET operation on such a path would return the list of top-
level groups.

• /grc/api/security/groups/{id}: A GET operation on such a path would return a

representation of the OpenPages group.

{
 "id": "1019",
 "description": "Rest API test group",
 "groupName": "TestGroup20",
 "isHidden": false,
 "adminLevel": 0,
 "isEnabled": true,
 "isEditable": true,
 "isLocked": false,
 "isDeleted": false,
 "emailAddress": "others@openpages.local",
 "hasMembers": false,
 "links":
 [
 {
 "href": "1019",
 "rel": "self"
 },
 {
 "type": "application/json",
 "href": "1019?alt=application%2Fjson",
 "rel": "alternate"
 },
 {
 "href": "1019",
 "rel": "edit"
 },
 {
 "type": "application/json",
 "href": "1019?alt=application%2Fjson",
 "rel": "describedby"
 },
 {
 "type": "application/json",
 "href": "11?alt=application%2Fjson",

 47

 "rel": "up"
 },
 {
 "type": "application/json",
 "href": "1019/subgroups?alt=application%2Fjson",
 "rel": "down"
 }
]
}

An application data resource with URI template /grc/api/groups/{id} can be modified by
performing a PUT operation with the updated value for the group.

• /grc/api/security/groups/{id}/subgroups: A POST operation to this URL containing
the entry representing the list of subgroups or list of subgroups id would add the
subgroups to the group with the specified id.

Example: A POST operation on the following URL with header Content-Type:
application/json, would make groups with Id 1024 and 1025 members of the group with Id
299 http://localhost/grc/api/security/groups/299/subgroups

 [
 {
 id:"1024"

 },
 {
 id:"1025"
 }
]

A GET operation to this URL will return the list of subgroups of the group with specified id.

Example: A GET operation on the following URL
http://localhost/grc/api/security/groups/299/subgroups

Returns:

 [
 {
 "links":
 [
 {
 "rel": "alternate",
 "href": "../300?alt=application%2Fjson",
 "type": "application/json"
 },
 {
 "rel": "self",
 "href": "../300"
 },
 {
 "rel": "edit",

 48

 "href": "../300"
 },
 {
 "rel": "describedby",
 "href": "../300?alt=application%2Fjson",
 "type": "application/json"
 },
 {
 "rel": "up",
 "href": "../299?alt=application%2Fjson",
 "type": "application/json"
 },
 {
 "rel": "down",
 "href": "../300/subgroups?alt=application%2Fjson",
 "type": "application/json"
 }
],
 "groupName": "API_Sub_Group75bc19db-6150-44a7-92e6-ef21d12f26b4",
 "id": "300",
 "description": "Sub group created for CRUD test through API - updated",
 "isLocked": false,
 "isHidden": false,
 "isDeleted": false,
 "isEnabled": false,
 "isEditable": true,
 "hasMembers": false,
 "emailAddress": "foo@ibm.com",
 "adminLevel": 0
 }
]

• /grc/api/security/groups/{id}/subgroups?subgroups={subgroupId}: A DELETE
operation would remove specified subgroups from the group with the specified id.

Example: A DELETE operation to the following URL will remove the subgroups with ids
1024 and 1025 from the group with id 1020.
http://localhost /grc/api/security/groups/1020/subgroups?subgroups=1024,1025

• /grc/api/security/groups/{id}/users: A POST to this URL containing the entry

representing the user objects will add the users to the Group specified by {Id}. The entry
can contain ids of user objects or more information, such as username, firstName,
lastName, and localeISOCode.

Example: Adding users to a group
POST this body to /grc/api/security/groups/{Id}/users with header Content-Type:
application/json

[

 {
 id:"2012"

},
{

 49

 id:"2008",
userName:"RESTUSER2",

 firstName:"user2",
lastName:"test",

"localeISOCode": "en_us",
"availableProfileNames": ["ORM Profile", “ITG Profile”],
"preferredProfileName": "ORM Profile"
"displayName": " RESTUSER2 [user2 test] user2@openpages.local"

}
]

• /grc/api/security/groups/{Id}/users: A GET operation on such a path would return
the list of all the users that belong to the group.

A DELETE operation would delete the specified users from the group with the specified Id.

Example: A DELETE operation to the following URL will remove the user with id 1021 from
the group with id 1020.
http://localhost /grc/api/security/groups/1020/users?users=1021

• /grc/api/security/groups/{Id}/roles : A GET operation to this URL will return the list
of roles associated with the specified group id.

• /grc/api/security/groups/{Id}/roles?role={roleId}&context={grcObjectId}:

A POST operation to this URL will assign the roles to the specified group id.

Example:
 http://localhost/grc/api/security/groups/2010/roles?role=2033&context=14601
A DELETE operation to this will revoke the specified roles of the group with the specified
Id.

/permissions
• /grc/api/security/permissions: A GET operation to this URL returns a list of all the

application permissions.

• /grc/api/security/permissions/{permissionId}: A GET operation to this URL returns

the application permission for the specified Id.

Example: A GET operation to http://localhost/grc/api/security/permissions/3

Returns:
{
 "name": "System Administration Mode",
 "id": "3",
 "description": "System administration mode functions",
 "fullName": "All/Administration/System Administration Mode"
}

 50

/roles
• /grc/api/security/roles: A GET operation to this URL returns the list of all role

templates.

Returns:
[
 {
 "id": "241",
 "description": "used in role template related automation tests for REST API. ",
 "roleName": "RiskApiTestRoleTemplate_1",
 "isEnabled": true,
 "isLocked": false,
 "grcObjectType": "SOXBusEntity",
 "dateCreated": "2013-09-23T12:19:03.680-04:00",
 "dateChanged": "2013-09-25T22:49:52.285-04:00"
 }
]

• /grc/api/security/roles/{roleId}: A GET operation to this URL returns the role
template for the specified role.

• /grc/api/security/roles/{roleId}/access: A GET operation returns the list of all the

access permission associated with the specified role.

Example: A GET operation to the following URL
http://localhost/grc/api/security/roles/241/access

Returns:
[
 {
 "id": "1",
 "canRead": true,
 "canWrite": false,
 "canDelete": false,
 "canAssociate": false,
 "rootFolderId": "14",
 "objectTypeId": "5"
 },
 {
 "id": "2",
 "canRead": true,
 "canWrite": false,
 "canDelete": false,
 "canAssociate": false,
 "rootFolderId": "17",
 "objectTypeId": "5"
 }
]

• /grc/api/security/roles/{roleId}/permissions: A GET operation to this URL returns
the list of all the permissions associated with the specified role.

[
 {
 "name": "All Permissions",

 51

 "id": "1",
 "fullName": "All"
 },
 {
 "name": "Administration",
 "id": "2",
 "description": "Access all administrative functions",
 "fullName": "All/Administration"
 },
 {
 "name": "System Administration Mode",
 "id": "3",
 “description": "System administration mode functions",

 "fullName": "All/Administration/System Administration Mode"
 },

 {
 "name": "Files",
 "id": "4",
 "fullName": "All/Files"
 }
]

/users
• Some of the URL’s related to users expect a user id. This {userId} can be either the user’s

name or the user’s OpenPages Id. If the user’s name is numeric – e.g. ‘12345’ - then add
the following parameter to the url: isName=[true | false]. If the parameter isName is
not specified it is the same as if ‘isName=false’ was used.

Here are examples of the usage:

/grc/api/security/users/12345?isName=true
/grc/api/security/users/12345/groups?isName=true

• /grc/api/security/users: A POST operation to this URL containing the entry

representing the object to be created will create the user. The entry contains user
information for the user to create, which has username, description, first and last name of
the user, email address and other specifications like user locale, group memberships and
whether the user is enabled or hidden.

Example: POST this body to /grc/api/security/users with header Content-Type:
application/json

 {
 userName:"RESTUSER1",
 firstName:"user1",
 lastName:"test",
 localeISOCode: "en_us",
 emailAddress: "others@openpages.local",

availableProfileNames: ["ORM Profile", “ITG Profile”],
 preferredProfileName: "ORM Profile",
 password: "password",
 "displayName": " RESTUSER1 [user1 test] others@openpages.local"
 groups:

 52

 {
group:
[
 {

 id :"2003"
 groupName:"RestTestGroup1"

 },
 {

 id :"2004" ,
 groupName:"RestTestGroup2"

 }
]

}

 }

Note: Attribute "emailAdress" is deprecated as of release OP 7.3. Please use
"emailAddress" instead.

• /grc/api/security/users/{userId}: A GET operation to this URL will return the user

information associated with the specified user Id.
{
 "id": "1021",
 "userName": "RUSER1",
 "adminLevel": 0,
 "isEnabled": true,
 "isHidden": false,
 "isEditable": true,
 "firstName": "Ruser1",
 "lastName": "Rtest",
 "passwordExpiresInDays": 0,
 "isTemporaryPassword": false,
 "isPasswordChangeFromAdmin": false,
 "isLocked": false,
 "isDeleted": false,
 "emailAddress": "others@openpages.local",
 "localeISOCode": "en_us",
 "canChangePassword": true,
 "passwordCreationDate": "2013-09-25T22:01:47.408-04:00",
 "isSecurityAdministrator": true,

 "availableProfileNames": ["ORM Profile", “ITG Profile”],
 "preferredProfileName": "ORM Profile"
 "displayName": " RUSER1 [Ruser1 Rtest] others@openpages.local"
}

• /grc/api/security/users/{userId}: A PUT operation to this URL containing the entry
representing the object to be updated will update the user information associated with the
specified user Id.

Example: A PUT with the following to http://localhost/grc/api/security/users/1021

 {
 "id": "1021",

 53

 "userName": "RUSER1",
 "description":"Rest API test user 1"
 }

Returns:
{
 "id": "1021",
 "description": "Rest API test user 1",
 "userName": "RUSER1",
 "adminLevel": 0,
 "isEnabled": false,
 "isHidden": false,
 "isEditable": true,
 "firstName": "Ruser1",
 "lastName": "Rtest",
 "passwordExpiresInDays": 0,
 "isTemporaryPassword": false,
 "isPasswordChangeFromAdmin": false,
 "isLocked": false,
 "isDeleted": false,
 "emailAddress": "others@openpages.local",
 "localeISOCode": "en_us",
 "canChangePassword": false,
 "passwordCreationDate": "2013-09-25T22:04:44.744-04:00",
 "isSecurityAdministrator": true,
 "availableProfileNames": ["ORM Profile", “ITG Profile”],
 "preferredProfileName": "ORM Profile"

 "displayName": " RUSER1 [Ruser1 Rtest] others@openpages.local"
}

• /grc/api/security/users/{userId}/groups : A GET operation to this URL will return
the list of groups associated with the specified user Id.

Returns:
[
 {
 "id": "1020",
 "description": "Rest API test group",
 "groupName": "Group1",
 "adminLevel": 0,
 "isEnabled": true,
 "isHidden": false,
 "isEditable": true,
 "isLocked": false,
 "isDeleted": false,
 "emailAddress": "others@openpages.local",
 "hasMembers": false
 },
 {
 "id": "3",
 "description": "All OpenPages Users",
 "groupName": "OpenPages",
 "adminLevel": 2,

 54

 "isEnabled": true,
 "isHidden": false,
 "isEditable": false,
 "isLocked": false,
 "isDeleted": false,
 "emailAddress": "AllOpenPagesUsers@openpages.local",
 "hasMembers": false
 }
]

• grc/api/security/users/{userId}/permissions: A GET operation to this URL will

return the list of all the application permission associated with the specified user Id.

• /grc/api/security/users/{userId}/roles: A GET operation to this URL will return the

list of roles associated with the specified user Id.

• /grc/api/security/users/{userId}/roles?role={roleId}&context={grcObjectId

or objectTypeName}: A POST operation to this URL assigns the roles to the specified
user id for the specified object folder. A DELETE operation revokes the specified roles of
the user id for the specified object folder. If the parameter ‘context’ is an object type
name, the assign/revoke operations will act on the root folder of the object type.

• /grc/api/security/users/{userId}/password: A PUT operation to this URL containing

the entry representing the object to be updated will reset the password of the specified user
id.

• /grc/api/security/users/{userId}/action/anonymize?text={anonymizedText}:

A PUT operation to this URL containing the entry representing the object to be updated will
anonymize attributes (first name, middle name, last name, description, email address) of the
specified user id.

The parameter “text” is optional, default is "Anonymous", the maximum length of the value
is 64.

The first name, last name and description of the user will be the anonymized text.

The middle name of the user will be empty.

The email address of the user will be
"{anonymizedText}@{anonymizedText:lowercase}.com", e.g.
"Anonymous@anonymous.com"

Permissions:
The operation can only be performed by a super user.
Note: please make sure that the given user's activity in the system has
terminated/quiesced before anonymizing them.

/search
• /grc/api/search: A GET operation using this URI performs a search across all OpenPages

with Watson data using a search index; configured by system administrators. The search is
performed by matching search terms across any field in the current user’s profile and
returns a list of results based on a search ranking (most relevant first). A specific range can

 55

be requested, and separate requests are used to retrieve subsequent ranges. The results
are limited to the setting ‘Platform / Search / Request / Result Cache Size’; ranges beyond
this size are not allowed. The search may be scoped by a list of Types, or all Types if not
specified.

Optional Parameters:
o fot – a comma-delimited list of Object Type names or IDs. When two or more Object

Types names or IDs are used, the search is OR’ed.
o fur – a search syntax representing one or more Users facets to search on, use

semicolon to represent more than one user facet.
Syntax: {!T A}[DATA];{!T A}[DATA]

 T == Type of user facet
• !c = creator
• !l = last modified by
• !o = names on object

When two or more types are used, the search is AND’ed.
 A == Action on user facet

• m = me
• o = others

 DATA = Data of user facet
• Comma delimited list of user IDs; if a user ID has a comma, it must

be escaped using “\”.
o fdt – a search syntax representing one or more Dates facets to search on, use

semicolon to represent more than one date facet.
Syntax: {!T A}[DATA];{!T A}[DATA]

 T == Type of date facet
• !c = creation date
• !l = last modified date
• !o = other date

When two or more types are used, the search is AND’ed.
 A == Action on date facet

• o = on date
• r = range date
• p = previous days
• n = next days

 DATA = Data of date facet
• YYYY-MM-DD = a specific date
• YYYY-MM-DD TO YYYY-MM-DD = for range date
• # = for previous or next days

o ffp – a string representing the Folder Path facet to search on
o range – a range of results to return in format [start]-[end]

Example: range=0-49. Default, if not specified, is a range of 0-9.
o types – (deprecated, use “fot”) a comma-delimited list of object type names or Ids

Facet searching is available on fot (Object Types), fdt (Dates), & ffp (Folder Path). Two or
more facets can be combined. For example,

fot – &fot=SOXBusEntity,SOXIssue,SOXTask
fur – &fur={!c m}[orm];{!l o}[alaudit,sueaudit,charlieaudit]
fdt – &fdt={!c o}[2015-06-01];{!l r}[2016-01-01 TO 2016-06-31];{!o n}[7]
ffp – &ffp=/Test 273/Level One 84/Issue 84

Example: A GET with the following options
http://localhost/grc/api/search?q="test terms"&range=0-9

 56

Returns:
A search results list containing one page of matching results from the search index, based
on result rankings. The search results contain summary information of GRC Objects only.
Note: the matching search field may not necessarily be present in the response data as the
match may have been from another field that is not returned.

[
 {
 "id":"4029",
 "name":"Test 132.txt",
 "description":"This is an example of free text.",
 "path":"BusinessEntity / Test 131 / Test 132 / Test 132",
 "objectTypeId":"5",
 "objectTypeName":"SOXBusEntity",
 "objectTypeLabel":"Business Entity",
 "parentFolderId":"1480"
 },
 {
 "id": "1242",
 "name": "Global Financial Services",
 "path": " / Global Financial Services",
 "objectTypeId": "43",
 "objectTypeName": "SOXBusEntity",
 "objectTypeLabel": "Business Entity",
 "parentFolderId": "1241"
 }
]

Range headers
The Search API supports an optional alternative method for specifying ranges of results. The
Search API will support HTTP’s Range header to perform paging as well as the range query
parameter. The Range Header is defined by RFC 2616 as a header with the format of:

Range: items=0-9

The Search REST API responds with another HTTP header to indicate the range that the server
was able to respond with.

Content-Range: items 0-9/100

The number following the range of items represents the total number of items available on the
server for that search. Clients may request any range up to that total amount.

/environmentmigration
Used to interact with OpenPages Environment Migration tool for import and export operations
and other related features.

Deprecation Notice: The Environment Migration API is deprecated in 8.2.0.0

http://www.ietf.org/rfc/rfc2616.txt

 57

• /grc/api/environmentmigration/export/{exportName}: A GET operation to this
URL retrieves the jar file containing the exported data from the Object Manager for an
export migration process.

Deprecation Notice: The GET and POST methods for
/grc/api/environmentmigration/export are deprecated in 8.2.0.0

• /grc/api/environmentmigration/import/{importName}: A POST operation to

this URL will initiate a migration import process with the name specified. A zip or a jar file
containing the data the Object Manager needs to import must be sent in the request
body as binary data. The previous import process must be finished in order to
successfully initiate another request.

 Example:
 [
 {
 "status": 0,
 "processId": 47,
 "statusName": "Pending",
 "processName": "openpages-env-mig-101615032619"
 }
]

Deprecation Notice: The POST method for
/grc/api/environmentmigration/import/{importName} is deprecated in 8.2.0.0

• /grc/api/environmentmigration/process: A GET operation to this URL will return

information for all processes with matching statuses as the ones provided as input. If no
statuses are provided, then the operation will return information for all processes
regardless of their status.

 Example: GET operation with status value of 16 (Completed Successfully)
 http://localhost/grc/api/environmentmigration/process?status=16

 Returns:
 [
 {
 "createdOn": 1447787479509,
 "percentComplete": 100,
 "status": 16,
 "processId": 52,
 "statusName": "Completed Successfully",
 "name": "openpages-env-mig-101615032619",
 "isFinished": true,
 "lastModifiedDate": 1447787844425,
 "processTypeId": 150
 },
 {
 "createdOn": 1447787479441,
 "percentComplete": 100,
 "status": 16,
 "processId": 51,
 "statusName": "Completed Successfully",

 58

 "name": "openpages-env-mig-101615032619",
 "isFinished": true,
 "lastModifiedDate": 1447787845360,
 "processTypeId": 120
 },
]

Deprecation Notice: The GET method for
/grc/api/environmentmigration/process is deprecated in 8.2.0.0

• /grc/api/environmentmigration/process/{processID}: A GET operation to this
URL will retrieve information for the process with the provided ID.

 Example:
 {
 "createdOn": 1447787194584,
 "percentComplete": 100,
 "status": 16,
 "processId": 47,
 "statusName": "Completed Successfully",
 "name": "openpages-env-mig-101615032619",
 "isFinished": true,
 "lastModifiedDate": 1447787248040,
 "processTypeId": 120
 }

Deprecation Notice: The GET method for
/grc/api/environmentmigration/process/{processID } is deprecated in 8.2.0.0

/processes
Used to interact with OpenPages long running processes for query a process information
operations and other related features.

• /grc/api/processes/types: A GET operation to this URL retrieves a list of all process type

information.

Example: GET operation.
http://localhost/grc/api/processes/types

Returns:
 [
 {
 "processTypeId": "12",
 "name": "Create Reporting Schema",
 "description": "Create Reporting Schema",
 "defaultTimeSeconds": 3600,
 "isMultipleInstance": false,
 "isTerminateUponStart": true
 },
 ...
 {
 "processTypeId": "36",

 59

 "name": "Reporting Framework Generation",
 "description": "Reporting Framework Generation",
 "defaultTimeSeconds": 3600,
 "isMultipleInstance": false,
 "isTerminateUponStart": true
 }
]

• /grc/api/processes: A GET operation to this URL retrieves a list of process information.

Optional parameters for query processes include:
o processId – the process id of queried processes
o parentProcessId – the parent process id of queried processes
o processTypeId – the process type id of queried processes
o status – the process status of queried processes, in list separated with comma ','.

We have status:
STATUS_FINISHED_ERROR
STATUS_FINISHED_PARTIAL_SUCCESS
STATUS_FINISHED_SUCCESS
STATUS_FINISHED_WARNING
STATUS_PENDING
STATUS_QUEUED
STATUS_RUNNING
STATUS_STARTED
STATUS_TERMINATED_SYSTEM
STATUS_TERMINATED_USER
STATUS_UPDATE_ERROR
STATUS_WARNING

o createdOnBegin – the begin of the created time of queried processes, in
XMLGregorianCalendar pattern "yyyy-MM-dd'T'HH:mm:ss'Z'", for example:
"2001-01-31", "2001-01-31T01:59:59", "2001-01-31T01:59:59+01:00"

o createdOnEnd - the end of the created time of queried processes, in
XMLGregorianCalendar pattern "yyyy-MM-dd'T'HH:mm:ss'Z'", for example:
"2001-01-31", "2001-01-31T01:59:59", "2001-01-31T01:59:59+01:00"

o createdBy – the process creator (user) name of queried processes.

Example: GET operation with status value of STATUS_FINISHED_SUCCESS
 http://localhost/grc/api/processes?status=STATUS_FINISHED_SUCCESS

Returns:
[
 {
 "processId": "2",
 "name": "Reporting Framework Generation",
 "description": "Generating Framework Model, Labels, Custom Query Subjects.",
 "processTypeId": "36",
 "finished": true,
 "createdOn": "2017-07-03T16:37:06.857+08:00",
 "createdBy": "OpenPagesAdministrator",
 "status": "STATUS_FINISHED_SUCCESS",
 "percentComplete": 100,
 "childProcesses":
 [
]

 60

 },
 {
 "processId": "1",
 "name": "Create Reporting Schema",
 "description": "Create Reporting Schema",
 "processTypeId": "12",
 "finished": true,
 "createdOn": "2017-07-03T16:36:50.716+08:00",
 "createdBy": "OpenPagesAdministrator",
 "status": "STATUS_FINISHED_SUCCESS",
 "percentComplete": 100,
 "childProcesses":
 [
]
 }
]

• /grc/api/processes/{processId}: A GET operation to this URL retrieves a specific

process information.

Example: GET operation with process id of 1.
http://localhost/grc/api/processes/1

Returns:
{
 "processId": "1",
 "name": "Create Reporting Schema",
 "description": "Create Reporting Schema",
 "processTypeId": "12",
 "finished": true,
 "createdOn": "2017-07-03T16:36:50.716+08:00",
 "createdBy": "OpenPagesAdministrator",
 "status": "STATUS_FINISHED_SUCCESS",
 "percentComplete": 100,
 "childProcesses":
 [
]
}

• /grc/api/processes/latest/{processTypeId}: A GET operation to this URL retrieves
the latest process information for a specific process type.

Example: GET operation with process type of 12.
http://localhost/grc/api/processes/latest/12

Returns:
{
 "processId": "1",
 "name": "Create Reporting Schema",
 "description": "Create Reporting Schema",
 "processTypeId": "12",
 "finished": true,
 "createdOn": "2017-07-03T16:36:50.716+08:00",

 61

 "createdBy": "OpenPagesAdministrator",
 "status": "STATUS_FINISHED_SUCCESS",
 "percentComplete": 100,
 "childProcesses":
 [
]

}

• /grc/api/processes/{processId}/logs?includeLocalizedStatus={true|false}&st
artRow={paging start row index}&endRow={paging end row index}: A GET
operation to this URL retrieves a list of logs for a specific process information.

Example: GET operation with process id of 1 with localized status and return process logs
from the 10001 item to the 20000 item.
http://localhost/grc/api/processes/1/logs?
includeLocalizedStatus=true&startRow=10001&endRow=20000

Example: GET operation with process id of 1.
http://localhost/grc/api/processes/1/logs

Returns:
[
 {
 "processLogId": "172",
 "processId": "1",
 "status": "STATUS_FINISHED_SUCCESS",
 "statusMessage": "Create Reporting Schema: completed",
 "endTime": "2017-07-03T16:37:06.236+08:00"
 },
 {
 "processLogId": "171",
 "processId": "1",
 "status": "STATUS_RUNNING",
 "statusMessage": "Creation of Real-Time Reporting Schema: completed",
 "endTime": "2017-07-03T16:37:06.233+08:00"
 },
 ...
 {
 "processLogId": "1",
 "processId": "1",
 "status": "STATUS_STARTED",
 "statusMessage": "Create Reporting Schema: Started",
 "startTime": "2017-07-03T16:36:50.752+08:00"
 }

]

• /grc/api/processes/{processId}: A POST operation to this URL does a specific action
for a specific process. Optional parameters for the operation include:

o action – the action name. We have action:
terminate

Example: terminate the process whose id is 1.
http://localhost/grc/api/processes/1?action=terminate

 62

Returns: None

 63

Return codes and errors
This section documents high-level guidelines for interpreting HTTP return status codes:

1. 200 (“OK”) should be used to indicate nonspecific success.

In most cases, 200 is the code the client hopes to see. It indicates that the REST API
successfully carried out whatever action the client requested, and that no more specific
code in the 2xx series is appropriate. Unlike the 204 status code, a 200 response
should include a response body.

2. 200 (“OK”) must not be used to communicate errors in the response body.

Always make proper use of the HTTP response status codes as specified by the rules in
this section. In particular, a REST API must not be compromised in an effort to
accommodate less sophisticated HTTP clients.

3. 201 (“Created”) must be used to indicate successful resource creation.

A REST API responds with the 201 status code whenever a collection creates, or a store
adds, a new resource at the client’s request. There may also be times when a new
resource is created as a result of some controller action, in which case 201 would also
be an appropriate response.

4. 202 (“Accepted”) must be used to indicate a successful start of an asynchronous action.

A 202 response indicates that the client’s request will be handled asynchronously. This
response status code tells the client that the request appears valid, but it still may have
problems once it’s finally processed. A 202 response is typically used for actions that
take a long while to process.

Controller resources may send 202 responses, but other resource types should not.

5. 204 (“No Content”) should be used when the response body is intentionally empty.

The 204 status code is usually sent out in response to a PUT, POST, or DELETE
request, when the REST API declines to send back any status message or representation
in the response message’s body. An API may also send 204 in conjunction with a GET
request to indicate that the requested resource exists but has no state representation to
include in the body.

6. 301 (“Moved Permanently”) should be used to relocate resources.

The 301 status code indicates that the REST API’s resource model has been significantly
redesigned and a new permanent URI has been assigned to the client’s requested
resource. The REST API should specify the new URI in the response’s Location
header.

 64

7. 302 (“Found”) should not be used.

The intended semantics of the 302 response code have been misunderstood by
programmers and incorrectly implemented in programs since version 1.0 of the HTTP
protocol. The confusion centers on whether it is appropriate for a client to always
automatically issue a follow-up GET request to the URI in response’s Location
header, regardless of the original request’s method. For the record, the intent of 302 is
that this automatic redirect behavior only applies if the client’s original request used
either the GET or HEAD method.

To clear things up, HTTP 1.1 introduced status codes 303 (“See Other”) and 307
(“Temporary Redirect”), either of which should be used instead of 302.

8. 303 (“See Other”) should be used to refer the client to a different URI.

A 303 response indicates that a controller resource has finished its work, but instead of
sending a potentially unwanted response body, it sends the client the URI of a response
resource. This can be the URI of a temporary status message, or the URI to some
already existing, more permanent, resource.

Generally speaking, the 303 status code allows a REST API to send a reference to a
resource without forcing the client to download its state. Instead, the client may send a
GET request to the value of the Location header.

9. 304 (“Not Modified”) should be used to preserve bandwidth.

This status code is similar to 204 (“No Content”) in that the response body must be
empty. The key distinction is that 204 is used when there is nothing to send in the
body, whereas 304 is used when there is state information associated with a resource
but the client already has the most recent version of the representation.

10. 307 (“Temporary Redirect”) should be used to tell clients to resubmit the request to
another URI.

HTTP/1.1 introduced the 307 status code to reiterate the originally intended semantics
of the 302 (“Found”) status code. A 307 response indicates that the REST API is not
going to process the client’s request. Instead, the client should resubmit the request to
the URI specified by the response message’s Location header.

A REST API can use this status code to assign a temporary URI to the client’s requested
resource. For example, a 307 response can be used to shift a client request over to
another host.

11. 400 (“Bad Request”) can be used to indicate nonspecific failure.

400 is the generic client-side error status, used when no other 4xx error code is
appropriate.

 65

For errors in the 4xx category, the response body can contain a document describing
the client’s error (unless the request method was HEAD).

12. 401 (“Unauthorized”) must be used when there is a problem with the client’s credentials.

A 401 error response indicates that the client tried to operate on a protected resource
without providing the proper authentication. It may have provided the wrong credentials
or none at all.

13. 403 (“Forbidden”) should be used to forbid access regardless of authentication state.

A 403 error response indicates that the client’s request is formed correctly, but the
REST API refuses to honor it. A 403 response is not a case of insufficient client
credentials; that would be 401 (“Unauthorized”).

REST APIs use 403 to enforce application-level permissions. For example, a client may
be authorized to interact with some, but not all of a REST API’s resources. If the client
attempts a resource interaction that is outside of its permitted scope, the REST API
should respond with 403.

14. 404 (“Not Found”) must be used when a client’s URI cannot be mapped to a resource.

The 404 error status code indicates that the REST API can’t map the client’s URI to a
resource.

15. 405 (“Method Not Allowed”) must be used when the HTTP method is not supported.

The API responds with a 405 error to indicate that the client tried to use an HTTP
method that the resource does not allow. For instance, a read-only resource could
support only GET and HEAD, while a controller resource might allow GET and POST,
but not PUT or DELETE.

A 405 response must include the Allow header, which lists the HTTP methods that
the resource supports. For example: Allow: GET, POST.

16. 406 (“Not Acceptable”) must be used when the requested media type cannot be served.

The 406 error response indicates that the API is not able to generate any of the client’s
preferred media types, as indicated by the Accept request header. For example, a
client request for data formatted as application/xml will receive a 406 response if the
API is only willing to format data as application/json.

17. 409 (“Conflict”) should be used to indicate a violation of resource state.

The 409 error response tells the client that they tried to put the REST API’s resources
into an impossible or inconsistent state. For example, a REST API may return this
response code when a client tries to delete a non-empty store resource.

 66

18. 412 (“Precondition Failed”) should be used to support conditional operations.

The 412 error response indicates that the client specified one or more preconditions in
its request headers, effectively telling the REST API to carry out its request only if certain
conditions were met. A 412 response indicates that those conditions were not met, so
instead of carrying out the request, the API sends this status code.

19. 415 (“Unsupported Media Type”) must be used when the media type of a request’s
payload cannot be processed.

The 415 error response indicates that the API is not able to process the client’s supplied
media type, as indicated by the Content-Type request header. For example, a
client request including data formatted as application/xml will receive a 415 response if
the API is only willing to process data formatted as application/json.

20. 500 (“Internal Server Error”) should be used to indicate API malfunction.

500 is the generic REST API error response. Most web frameworks automatically
respond with this response status code whenever they execute some request handler
code that raises an exception.

Error responses
In cases of an Error generated from the API from either user input or server errors, the response
body should contain a standardized error response object consisting of two required attributes
and an optional errorCode

Example:
{
 "code": "404",
 "message": "Not Found - OP-01024: The requested Object Type was
not found. [T1ITFG2RR5J9]",
 "errorCode": "-1024"
}

code – the HTTP Response status code
message – the brief error message describing what occurred
errorCode – (optional) an OP specific error code, if available

Note: This behavior has changed in v8.0.0.3 and later. Previously the legacy behavior was to
put a Java level stack trace in the response body. Should you need this information it will be
logged in the application server logs. Additionally, you can change the registry setting
/OpenPages/Platform/API/Error Responses value to “detailed” to restore the legacy behavior.

 67

Security
Authentication is delegated to the WebSphere application server, so each entry point should not
have to verify the authentication token. There are two authentication mechanisms available out
of the box: Basic authentication and, since 8.0.0, Client Certificate authentication.

Basic authentication
HTTP Basic authentication is configured by default through your OpenPages application server.
Basic authorization schema is defined by RFC 2617, and is implemented by the client sending an
HTTP request header. Basic authorization contains the text “Basic” followed by the username and
password separated by colon ‘:’ and encoded in Base64. For example, if the client wishes to send
the username "Aladdin" and password "open sesame", it would use the following HTTP header
field:

 Authorization: Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

The OpenPages GRC REST API adheres to the RESTful systems principle of statelessness, so each
request made must provide the credentials of the user. Basic authentication is not considered
secure unless used with some external secure system such as SSL. For greatest security the
clients should avoid sending unencrypted credentials and requests should be performed over
HTTPS.

Client certificate authentication
The OpenPages GRC REST API also supports the Client Certificate Authentication method in
addition to Basic Authentication. OpenPages 8.2 continues to offer Client Certificate
Authentication with WebSphere Liberty Profile (WLP).

Client Certificate authentication is a method where the server allows requests only after
authenticating the client. The client must provide a public key certificate that identifies who the
client is, and that certificate must be trusted by the server (or signed by a trusted certificate)
client authentication. This traffic is over SSL (HTTPS), which ensures the security of the
connection and encryption. The control at the API level over which client certificates you trust
also provides an option to configure your security model to allow only certain pre-approved
clients to make requests to the REST API. For the OpenPages GRC REST API to use client
authentication instead of basic authentication, you must do some additional configuration in
Liberty.

For the official Liberty documentation about client authentication see “How to Setup Liberty to
Use Certificate-Based Authentication,” which goes into the general steps for configuring any
application in Liberty to use this method. For OpenPages, our integration with Liberty security
requires some additional configuration changes.

Prerequisites

• OpenPages v8.2 or later
• An x509 public key certificate that represents your client. This certificate need a Subject

which in some way identifies the user in OpenPages that this client is authenticating as.
For example, a subject might be "/CN=OpenPagesAdministrator" for a user
'OpenPagesAdministrator' or "/C=US/O=IBM/OU=WFSS/CN=brianl" for another user with

 68

the name 'brianl'. These usernames must exist as user accounts within OpenPages
before you begin.

Note: Creating a valid certificate yourself is beyond the scope of this document. But you
can read about how to do it using open source tools. For example:
http://veewee.github.io/blog/authenticating-with-x509-client-certificates/

• Access to the OpenPages application server and permission to modify the server
configuration.

Setup steps
Note: These steps guide you from taking a newly installed 8.2 environment and configuring it to
allow client certificate authentication for the REST API. If you've already modified the Global
Security configuration or GRC Security Domains (for instance for using SSO), you might need to
adjust these steps for your environment.

1. Go to <WLP_HOME>/usr/servers/<OP_SERVER>/configDropins/overrides (create the
overrides directory if it does not exist).

2. Create a new .xml file (for example OP_client_cert_config.xml) and add the following

elements:
<server>
<feature>transportSecurity-1.0</feature>
<sslDefault sslRef="defaultSSLConfig" />
<ssl id="defaultSSLConfig" keyStoreRef="defaultKeyStore" sslProtocol="SSL_TLSv2"
trustStoreRef="defaultTrustStore" clientAuthenticationSupported="true"/>
<keyStore id="defaultTrustStore" password="defaultPWD" />
<webAppSecurity allowFailOverToBasicAuth="true" />
</server>

Note: All elements for this configuration must go within the <server>
element.

• The <ssl> attribute clientAuthenticationSupported allows us to use client certificate

authentication.

• The keyStore element must specify a valid trust store to use (e.g. defaultTrustStore)
and its password (e.g. defaultPWD) as attributes.

Note: The default key store can be found in
<WLP_HOME>/usr/servers/<OP_SERVER>/resources/security/key.p12

• The <webAppSecurity>attribute allowFailOverToBasicAuth allows the API to use
basic authentication if certificate authentication fails. For more information, see
https://www.ibm.com/docs/en/was-liberty/base?topic=configuration-webappsecurity.

3. Add the CA signer certificate to the trust store. For example:

keytool -keystore
<WLP_HOME>/usr/servers/<OP_SERVER>/resources/security/key.p12 -
storepass <password> -importcert -alias <Certificate alias> -file
<Path to CA certificate> -storetype PKCS12

https://www.ibm.com/docs/en/was-liberty/base?topic=configuration-webappsecurity

 69

4. In the newly created .xml file, create an <openpagesUserRegistry /> element (still within

the <server> element).

5. Add the following attributes to the <openpagesUserRegistry /> element, depending on
your client certificate subjects:

• com.ibm.openpages.security.entry.user.key=”CN”
• com.ibm.openpages.security.entry.user.delimiter=”,”
• com.ibm.openpages.security.cert.regex=”true”

Or, for more complex regular expression (example):

• com.ibm.openpages.security.entry.user.regex=”(?:CN=)([^,]+),?”
• com.ibm.openpages.security.cert.regex=”true”

For example:
<openpagesUserRegistry
com.ibm.openpages.security.entry.user.regex="(?:CN=)([^,]+),?"
com.ibm.openpages.security.cert.regex="true"/>

These properties inform the OpenPages custom user registry how to parse a username
from the Subject entry in the client certificate. The first option is a simpler approach that
looks for the first occurrence of the CN= within a subject. The second approach uses a
regular expression to parse a username from the Subject with additional rules.

6. Stop the OpenPages application server.

7. Next, modify REST API application's web.xml files for each server--both web.xml AND

web_merged.xml (if present). The files are under the path:
 <WLP_HOME>/usr/shared/apps/op-apps.ear/com.ibm.openpages.api.rest.war/WEB-INF

Change:
 <login-config>
 <auth-method>BASIC</auth-method>
 <realm-name>OpenPagesRealm</realm-name>
 </login-config>
To:
 <login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>OpenPagesRealm</realm-name>
 </login-config>

8. Restart the OpenPages application server.

Testing client certificate authentication
You can test the client certificate authentication works by using a REST client that has support
for this authentication method. For example the Unix-style curl command supports this method.

For example, suppose that the client certificate is in client1.pem:
curl --tlsv1.2 --no-alpn --verbose --cert /path-to-/client1.pem
https://my-op-server:10111/grc/api/types

 70

This should be expected to return some results that include a lot of output related to the SSL
handshake (thanks to --verbose), and the end result should be a response body containing JSON
describing the OpenPages metadata schema (since we are requesting everything from
/grc/api/types). You can play around using other API end-points.

Note: if your server is not using a valid SSL certificate, you can add the --insecure parameter to
the command for testing purposes.

You can test this with other REST clients as well. For example, one popular client is PostMan,
which also supports client certificates through an additional configuration:
https://www.getpostman.com/docs/v6/postman/sending_api_requests/certificates

Regular expressions
The usage of regular expressions enables you to perform more granular logic for parsing out a
username from the larger Subject element of a certificate, which can contain many parts. The
example above shows how we might extract a username from a case where a Subject has the
form of "/C=US/O=IBM/OU=WFSS/CN=brianl".

Regex: (?:CN=)([^,]+),?

Essentially what this does is it looks for a non-capturing group that matches occurrences of
"CN=" and captures the text after that until the delimiter of ",". This is because when Liberty
interprets the Subject from the client certificate, the format in which the Subject is represented
looks like: "CN=brianl, OU=WFSS, O=IBM, C=US"

The Regex will match with "CN=brianl", and the username we take from the match will be the
capture group #1 identified by the regular expression as "brianl" in this case.

Here’s another example. Suppose that the CN= is not a simple username but an email address
and you need to map it to an OpenPages username.

In this case, the text we get from the Subject might be:
Text "CN=brianl@us.ibm.com, OU=WFSS, O=IBM, C=US"

The Regex could be: (?:CN=)([^@]+),?

Again, this matches the username from the CN= until the @ symbol, which parses just the part
we want from Subject.

This gives you more flexibility to handle different formats of Subjects in client certificates
depending on your organization’s policies and practices.

 71

Client-server interactions
Client interaction with the OpenPages GRC REST API, including sequence of events, depends on
the design of the client and the interaction objectives. Typically, an interaction will retrieve
Metadata, and/or Configuration information, and then make further requests to the server to
gather more data or perform updates.

Example: Diagram of the interaction to create a new GRC Object of type LossEvent

 72

REST samples
The GRC API includes samples which demonstrate client-code which uses the REST APIs.
Samples are located in the grc_api/samples installation directory. The provided samples
demonstrate common use cases and offer developers a starting point for developing new
applications.

AnonLossEventFormREST
This demo illustrates using the Remote REST APIs to fulfill a use case for anonymous data entry.
The following provides an overview of this sample:

• Allow users to enter in financial losses anonymously without logging in to OpenPages with

Watson.
• Users aren’t required to be created in OpenPages security.
• Users will navigate to a web page on a company intranet or existing web portal infrastructure

and fill out the form with details of the Loss.
• Upon submission, the Loss may be created in OpenPages using new REST API.

TivoliDirectoryIntegratorConnector
IBM Security Directory Integrator (SDI) is an integration framework Graphical Development
Environment to build and test solutions Web-based Administration and Monitoring Console for
management (AMC). It has connectors for many common protocols and systems. It also has
plugin architecture for making custom connectors/adapters. It allows for data transformation,
mapping for data from multiple systems in a defined flow called an "Assembly Line".

Note: SDI is the latest name for IBM Tivoli Directory Integrator (TDI).

This sample creates a very basic Assembly Line with an OpenPages connector written against the
OpenPages GRC REST API. The sample will pull LossEvents from OpenPages based on a Query
that is written in the QueryService syntax. The LossEvents are then mapped to a database table
called "Losses" that represents an external system.

Prerequisite: OpenPages 8.1 and later requires IBM Security Directory Integrator 7.2.0.3 to be
installed.

 73

Performance tips
You may add indexes to improve the performance of running a query. For more information,
please see Viewing the Configuration and Settings page > Platform folder settings >
Reporting Schema folder settings in the OpenPages with Watson Administrator's Guide.

Known limitations
If a field has been excluded from the reporting schema, it cannot be referenced via the API.

If you exclude a field from the reporting schema and the reporting framework. you might need to
update some of the select statements when using the IBM® OpenPages® REST API.

Look for any select * statements in your code that are referencing object types with excluded
fields.

Using the * is not supported in combination with excluded fields. Instead, define those select
statements so that they explicitly return the subset of fields that are available and necessary to
satisfy your requirements.

 74

Extend GRC API with custom REST services
Starting with version 8.0 (Fix Pack 2 or later) there is a feature in the GRC REST API which
supports extending the available REST API with custom services built according to the customer’s
needs. This provides the flexibility to create any business logic using the OpenPages GRC
Platform API and expose them in a convenient service that can be used by remote clients for
integrations or other automation purposes. Extensions to the REST API may be developed with
Java using the Spring Framework® and are deployed to the OpenPages application server as a
jar file package. On server startup the classpath will be scanned and any RestController classes
will be automatically loaded and ready to be used by your clients.

Assumptions
To use the extension feature effectively, you should have familiarity with the following

• OpenPages with Watson application and usage
• OpenPages GRC Platform API and OpenPages Legacy SDK*
• Programming languages and integrated development environments (IDEs), such as the

Java programming language and the Eclipse IDE
• Spring MVC and/or Spring-Rest frameworks
• Conventions and best practices for development of RESTful web services, including

secure engineering

The following requirements should be considered as you begin developing custom REST
extensions.

• Access is required to OpenPages application server file system to deploy files. Service
restarts are required to deploy new or updated extensions.

• Extensions could potentially expose the platform to risk based on the combination of
custom business logic code and execution of an platform APIs causing overhead on the
server. As with any custom development, this needs to be carefully designed,
implemented and tested before use in a production setting.

*Legacy SDK knowledge is optional, using GRC API’s is preferred.

Extension framework
The Custom REST Services are built using an extension framework that has been added to the
standard GRC REST API web application deployed as part of the OpenPages Enterprise
Application on WebSphere Application Server. Please refer to the high-level diagram for the
architecture for the extension framework.

 75

The custom code extensions will be introduced using classes which are annotated with Spring’s
@RestController annotation.

Unlike the Public GRC APIs, which are under the URI context of /grc/api/*, all of the extension
API’s will be under the /grc/ext/* context. Otherwise the Public and Extension APIs will both
share the same security mechanism, as configured in WebSphere Application Server. By default,
this will be BASIC authentication and it will function the same between the two kinds of APIs in
this web application.

Developing extensions

Dependencies
1. You must have a Java 8 JDK to compile and build your source code.
2. The following IBM and third-party libraries are the minimum required dependencies.

• com.ibm.openpages.api.jar
• slf4j-api-1.6.1.jar
• jackson-core-asl-1.9.11.jar
• jackson-mapper-asl-1.9.11.jar
• jackson-core-2.9.7.jar
• jackson-databind-2.9.7.jar
• jackson-annotations-2.9.0.jar
• spring-aop-5.1.3.RELEASE.jar
• spring-aspects-5.1.3.RELEASE.jar
• spring-beans-5.1.3.RELEASE.jar
• spring-context-5.1.3.RELEASE.jar
• spring-core-5.1.3.RELEASE.jar
• spring-expression-5.1.3.RELEASE.jar
• spring-oxm-5.1.3.RELEASE.jar
• spring-web-5.1.3.RELEASE.jar
• spring-webmvc-5.1.3.RELEASE.jar

 76

Implementing a simple extension framework RestController
This example illustrates the required aspects for implementing a new custom RestController
class. The examples used are based on the available API Samples ‘CustomRESTService’.

1. Create a Java class, the class must be located in the Java package
com.ibm.openpages.ext
Example:
com.ibm.openpages.ext.HelloController.java

2. The new class must extend from the com.ibm.openpages.ext.BaseExtController,
(which is now included in the com.ibm.openpages.api.jar)
Example:
public class HelloController extends BaseExtController {
}

3. Add Spring @RestController and annotations to identify your class as a RestController,
and @RequestMapping give it a URL mapping of your choice
Example:
@RestController
@RequestMapping(value="sample1")
public class HelloController extends BaseExtController {
}
Spring will map this controller will now be mapped to /grc/ext/sample1/* URL patterns

4. Now implement a method in your class that will perform the business logic you need
leveraging the OpenPages GRC Platform API, the method will also be annotated with
Spring’s @RequestMapping annotation to specify how this method should handle
requests

Example: (see below)

@RequestMapping (value="hello", method = RequestMethod.GET
 , produces=MediaType.TEXT_PLAIN_VALUE)
 public String helloApi(
 Model model,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 //get the API factory instance
 IServiceFactory apiFactory = super.getServiceFactory(request);
 ISecurityService service = apiFactory.createSecurityService();
 IUser theUser = service.getCurrentUser();

 //plain text response "Hello [user first name]"
 String sampleResponse = "Hello "+theUser.getFirstName();
 return sampleResponse;
 }

This implementation will expect to handle GET requests to /grc/ext/sample1/hello. It
attempts to get the current user for the session and use it to construct a plain text
response “Hello [user first name]”. This is a very simple example, but from this method
you could invoke more complex custom business logic using available Platform APIs.

5. Once you have implemented your Java class, you can export it as a jar from your IDE or

use your preferred Java build tools to create the jar containing your class file.

Example:
Export from Eclipse as sample-rest.jar

 77

Summary of general requirements for custom REST controllers

Package com.ibm.openpage.ext.rest
Subclass of BaseExtController
Class Annotation @RestController, @RequestMapping
Method Annotation @RequestMapping

Implementing RestControllers with JSON methods
The simple example used plain text as the response’s content-type. In a real-world case you are
likely to use a structured text format such as JSON. In addition to the content-type of the
response you can create the desired representation of your data using your own Java object to
represent your request inputs and response outputs.

In this example we write a controller method that will use JSON to serialize a simple Java bean
object to JSON.

1. The response content-type is specified in the method’s @RequestMapping annotation
through the produces=MediaType.APPLICATION_JSON_VALUE
Example:
@RequestMapping (value="checkUser", method = RequestMethod.GET,
produces=MediaType.APPLICATION_JSON_VALUE)

2. Listing 1: Example user method w ith JSON response
@RequestMapping (value="checkUser", method = RequestMethod.GET

 , produces=MediaType.APPLICATION_JSON_VALUE)
 @ResponseBody
 public UserBean checkUserApi(
 Model model,
 HttpServletRequest request,
 HttpServletResponse response) throws Exception {

 //sample way to get the API ServiceFactor
 IServiceFactory factory = super.getServiceFactory(request);
 ISecurityService ss = factory.createSecurityService();

 IUser currentUser = ss.getCurrentUser();

UserBean myResponse = new
UserBean(Long.valueOf(currentUser.getId().toString()),

 currentUser.getName(),
 currentUser.getDisplayName(),
 currentUser.getEmailAddress());
 //implicit converts UserBean to JSON via @ResponseBody and
produces=MediaType.APPLICATION_JSON_VALUE
 return myResponse;
 }

The response content-type is specified in the method’s @RequestMapping annotation through the
produces=MediaType.APPLICATION_JSON_VALUE.

In this example the return object is type “UserBean” which is a plain Java object with several
getter/setter fields for user information.

 78

Listing 2: UserBean Java class
public class UserBean {

 private Long actorId;
 private String name;
 private String displayName;
 private String email;

 public UserBean(){
 actorId = null;
 name = null;
 displayName = null;
 email = null;
 }

 public Long getActorId() {
 return actorId;
 }
 public void setActorId(Long actorId) {
 this.actorId = actorId;
 }
 public String getName() {
 return name;
 }
 public void setName(String name) {
 this.name = name;
 }
 public String getDisplayName() {
 return displayName;
 }
 public void setDisplayName(String displayName) {
 this.displayName = displayName;
 }
 public String getEmail() {
 return email;
 }
 public void setEmail(String email) {
 this.email = email;
 }
}

Spring will automatically convert this to the Response Body as JSON using Jackson’s
ObjectMapper. The resulting JSON response body may look like in Listing 3:

 79

Listing 3: JSON representation of UserBean
{
 "actorId":123,
 "name":"OpenPagesAdministrator",
 "displayName":"System Administrator",
 "email":"admin@youremail.com"
}
You have the flexibility to control the representation format for your responses by creating your
own objects. You can further control the JSON format through Jackson annotations.

Implementing RestControllers with error handling
You may want to tailor your RestController’s behavior on cases of exceptions or errors to properly
inform clients of your custom REST Service that there was an issue and the request was not
processed successfully.

Default error handling

Spring defaults to handling any uncaught exceptions thrown from your RestController methods as
a Internal Server Error with status code 500. Spring will form the HTTP response with this status
code and put a limited stack trace in the response body.

Mapping exceptions to responses

Should you choose to respond to clients with a tailored response for certain exceptions, you can
use Spring’s ExceptionHandler mechanism. To add an ExceptionHandler for the API
ObjectNotFoundException to your controller.

1. To add an ExceptionHandler, define a method in your RestContoller class
public void handleObjectNotFoundException(HttpServletRequest req,
Exception ex) {

 //here we only log the full error details server-side
super.getSimpleLogger(this.getClass()).error("User Not Found REST
Exception Handler",ex);

//optionally could create a totally custom response body for your
error message and set the HttpServletResponse with it
}

2. Add two annotations to this method
@ResponseStatus(value=HttpStatus.NOT_FOUND,

 reason="User Not Found")
 @ExceptionHandler({ ObjectNotFoundException.class })

@ResponseStatus declares what HTTP status and message are sent in response when the
exception is thrown
@ExceptionHandler declares what Java Exceptions will be mapped to the response status.

In this example ExceptionHandler we will map the ObjectNotFoundException to a HTTP response
status of 404 (Not Found), with a reason of “User Not Found”. This will not include a stack trace
in the response body by default.

Security Best Practice: Per weakness CWE-209: Information Exposure Through an Error
Message ensure that error messages only contain minimal details that are useful to the intended

 80

audience, and nobody else. In practice this means you typically do not want to include in an error
response any details that give away implementation details of your system to any potential
attackers. Sending a brief user readable reason for an error in your response and logging the full
details to a server-side log.

Deploying RestControllers to the extension framework
To deploy the custom RestControllers to the Extension Framework will require copying the jar file
containing your RestController and any other dependent classes (e.g. Java beans for JSON
serialization) to the OpenPages application servers (all servers in a load-balanced environment).

1. Copy your built jar, e.g. sample-rest.jar, (see Implementing a simple Extension
Framework RestController section above) to your OpenPages application server and
deploy it to <OP Home>/aurora/op-ext-lib

2. Repeat for all application servers if load-balanced.
3. Restart all OpenPages application servers

Tip: Look for messages in the WebSphere server’s SystemOut.log for messages to know whether
the RestController was loaded:
org.springframework.web.servlet.handler.AbstractHandlerMethodMapping
registerHandlerMethod Mapped
"{[/sample1/hello],methods=[GET],params=[],headers=[],consumes=[],pr
oduces=[text/plain],custom=[]}"

Testing deployed RestControllers
Once your RestController classes have been deployed they will be activated by default. The
Extension Framework exposed your Rest Controllers under the context root of
/grc/ext

So for example if you had a RestController with a mapping to /sample1/hello and the method of
GET, then using a preferred HTTP client you could send a GET request /grc/ext/sample1/hello
and receive back in response:
“Hello <your username>”

Administering extension framework

Disabling extensions
The OpenPages Administration Settings menu item: Platform/API/Custom/Enable Custom
REST Service key is set to true by default. Setting value to false will globally disable all
deployed RestControllers. When disabled an Error 503: Service Unavailable response is always
returned.

Tip: No restart is required for this change to go into effect.

Debug level logging

To enable debug level logging for custom RestControllers, on the OpenPages application server
under <OP Home>/aurora/conf/auroralogging.properties, uncomment the following lines.
log4j.logger.com.ibm.openpages.api.rest.extension.ExtensionInterceptor=
TRACE#com.openpages.aurora.common.logging.Log4jEventLoggerLevel, rest

 81

log4j.logger.com.ibm.openpages.ext.rest=TRACE#com.openpages.aurora.comm
on.logging.Log4jEventLoggerLevel, rest

Once enabled logging will go to the <OP Home>/aurora/logs/opapp-*-rest.log
Typical log messages will include what RestControllers are being invoked, and elapsed duration of
request handling. Errors will also be written to aurora.log

Tip: No restart is required for this change to go into effect.

	Contents
	Introduction
	Audience
	Finding information
	RESTful systems
	Addressability
	Statelessness
	Addressable space / URI design

	Filter capability
	Service document
	Headers

	Reserved and restricted characters
	Paths and parameters
	/types
	/contents
	Uploading a document
	Working with existing document data
	/folders
	Deleted resources
	/query
	/configuration
	/adminMode
	/currencies
	/reportingPeriods
	/text
	/profiles

	/security
	/groups
	/permissions
	/roles
	/users

	/search
	Range headers

	/environmentmigration
	/processes

	Return codes and errors
	Error responses

	Security
	Basic authentication
	Client certificate authentication
	Prerequisites
	Setup steps
	Testing client certificate authentication
	Regular expressions

	Client-server interactions
	REST samples
	AnonLossEventFormREST
	TivoliDirectoryIntegratorConnector

	Performance tips
	Known limitations
	Extend GRC API with custom REST services
	Assumptions
	Extension framework
	Developing extensions
	Dependencies
	Implementing a simple extension framework RestController
	Implementing RestControllers with JSON methods
	Implementing RestControllers with error handling
	Default error handling
	Mapping exceptions to responses

	Deploying RestControllers to the extension framework
	Testing deployed RestControllers
	Administering extension framework
	Disabling extensions
	Debug level logging

